

SOMMAIRE

Parti	e I - Le Centre Nucléaire de Production d'Electricité	4
de Flo	amanville en 2020	4
I.		
II.	Le CNPE de Flamanville	
	Modifications apportées au voisinage du CNPE de Flamanville	
IV.	Évolutions scientifiques susceptibles de modifier l'étude d'impact	6
V. I'e	Bilan des incidents de fonctionnement et des évènements significatifs pour nvironnement	
Parti	e II - Prélèvements d'eau	9
	Prélèvement d'eau destinée au refroidissement	
II.	Prélèvement d'eau destinée à l'usage industriel	_ 11
III.	Prélèvement d'eau destinée à l'usage domestique	
IV.	Milieu de prélèvement : comparaison pluriannuelle, prévisionnel, valeurs lim maintenance	ites
Parti	e III — Restitution et consommation d'eau	_ 14
I.		
II.	Consommation d'eau	_ 14
Parti	e IV - Rejets d'effluents	_ 16
I.	Rejets d'effluents à l'atmosphère	_ 16
II.	Rejets d'effluents liquides	_ 25
III.	Rejets thermiques	_ 42
Parti	e V - Surveillance de l'environnement	_ 45
I.	Surveillance de la radioactivité dans l'environnement	_ 45
II.	Physico-chimie des eaux souterraines	_ 51
III.	Physico-chimie des eaux de surface	_ 52
IV.	Surveillance écologique et halieutique	_ 53
\/	Acquetique environnementale	E /

Partie VII - Évaluation de l'impact environnemental et sanitaire des rejets de l'installation 55

Partie VIII - Gestion des déchets		
I.	Les déchets radioactifs	59
II.	Les déchets non radioactifs	63
ABRE	EVIATIONS	66

Partie I - Le Centre Nucléaire de Production d'Electricité de Flamanville en 2020

I. Contexte

« La conformité à la réglementation en vigueur, la prévention des pollutions ainsi que la recherche d'amélioration continue de la performance environnementale » constituent l'un des engagements de la politique environnementale d'EDF.

Dans ce cadre, tous les Centres Nucléaires de Production d'Electricité (CNPE) d'EDF disposent d'un système de management de l'environnement certifié « ISO14001 ».

La maîtrise des événements, susceptibles d'avoir un impact sur l'environnement, repose sur une application stricte des règles de prévention (bonne gestion des eaux usées, des « effluents », de leurs traitements, entreposage, contrôles avant rejet, etc.) et sur un système complet de surveillance de l'environnement sur et autour des CNPE.

En application de l'article 4.4.4 de l'arrêté du 7 février 2012 fixant les règles générales relatives aux installations nucléaires de base, ce document présente le bilan de l'année 2020 du CNPE de Flamanville en matière d'environnement.

II. Le CNPE de Flamanville

Le Centre Nucléaire de Production d'Électricité (CNPE) de Flamanville est implanté en Normandie, en bordure de la Manche. Il est situé sur le territoire de la commune de Flamanville, dans le département de la Manche, sur la côte Ouest du Cotentin.

Figure 1 - Localisation de la centrale de Flamanville

Composé de trois unités dont une en construction, il a produit en 2020 0,255 milliard de KWh. Quotidiennement, ce sont 1170 hommes et femmes qui œuvrent à la production en toute sûreté d'une électricité compétitive et faiblement émettrice de CO₂ et environ 2800 hommes et femmes qui œuvrent à la construction de l'EPR.

Les 56 réacteurs français en exploitation appartiennent à la même technologie, appelée « réacteur à eau pressurisée (REP) » et déployée dans l'hexagone entre 1977 et 1999. La centrale de Flamanville fait donc partie d'un parc standardisé qui permet de mutualiser les ressources d'ingénierie, d'exploitation et de maintenance et de disposer d'un retour d'expérience important, applicable à l'ensemble des sites.

	1985 : unité de production n°1
Date de mise en service	1986 : unité de production n° 2
	Unité de production n° 3 en construction
Production en 2020	0,255 TWh
Nombre d'unité de production	3
Puissance totale	2 x 1300 MWh
T dissance totale	1x 1650 MWh (en construction)
Effectif total	770 salariés EDF et 400 salariés prestataires permanents sur Fla1/2
Enoun total	800 salariés EDF et 2000 salariés prestataires permanents sur Fla3

Figure 2 - Fiche d'identité de la centrale de Flamanville

Le site de Flamanville est installé au pied d'une falaise granitique, haute de 70 mètres, ancienne carrière de pierres dont l'exploitation a été stoppée au milieu du XIXe siècle. Ses pierres pavent encore aujourd'hui la place de la Concorde, à Paris.

Le sous-sol du site, riche en fer, abrite une ancienne mine sous-marine, exploitée jusqu'en 1962. Lorsque le projet d'implantation sur ce même territoire d'une centrale nucléaire a vu le jour, le maire de Flamanville a consulté sa population par référendum. Le 6 avril 1975, 65 % de la population s'est déclarée favorable au projet.

À la suite de ce référendum local et d'une enquête publique, la déclaration d'utilité publique est parue dans le Journal Officiel, le 24 décembre 1977.

Les premiers terrassements ont débuté en janvier 1978.

La première unité de production a été raccordée au réseau national de distribution d'électricité en décembre 1985 et la seconde unité en juillet 1986. Le poste de Menuel, au sud du site, assure l'évacuation de l'électricité produite par EDF Flamanville vers le réseau électrique national.

Le chantier de construction de la troisième unité de production d'électricité nucléaire de Flamanville est situé au voisinage immédiat des tranches en exploitation 1 et 2 du CNPE de Flamanville.

Le chantier est physiquement séparé du CNPE depuis l'été 2006 pour des raisons de sûreté et de sécurité.

Le début de la construction a été autorisé par décret d'autorisation de création de l'unité EPR paru le 11 avril 2007.

III. Modifications apportées au voisinage du CNPE de Flamanville

La surveillance de l'environnement industriel est réalisée en application d'une prescription interne d'EDF. Lors de l'année 2020, aucune modification notable au voisinage du CNPE de Flamanville n'a été identifiée.

IV. Évolutions scientifiques susceptibles de modifier l'étude d'impact

Dans le cadre d'une amélioration continue, EDF mène des études afin d'améliorer la connaissance de ses rejets (identification de sous-produits de la morpholine et de l'éthanolamine, de sous-produits issus des traitements biocides, dégradation de la monochloramine et de l'hydrazine dans l'environnement, etc). EDF mène également des études afin d'améliorer la connaissance de l'incidence de ses rejets sur l'homme et l'environnement. Ces évaluations d'impact nécessitent en effet l'utilisation de valeurs de référence qui font l'objet d'une veille scientifique :

- Les Valeurs Toxicologiques de Référence pour l'impact sanitaire sur l'Homme, valeurs sélectionnées selon les critères définis dans la note d'information n° DGS/EA/DGPR/2014/307 du 31/10/2014,
- Les valeurs seuils ou guides issues des textes réglementaires ou des grilles de qualité d'eau, les données écotoxicologiques, en particulier les PNEC (Predicted No Effet Concentration), et les études testant la toxicité et l'écotoxicité des effluents CRT, pour l'analyse des incidents sur l'environnement. A noter que les PNEC sont validées par la R&D d'EDF après bibliographie exhaustive et, si nécessaire, réalisation de tests écotoxicologiques commandités par Edf et réalisées selon les normes OCDE et les Bonnes Pratiques de Laboratoire.

L'ensemble de ces évolutions scientifiques est intégré dans les études d'impact.

V. Bilan des incidents de fonctionnement et des évènements significatifs pour l'environnement

En 2003, le CNPE Flamanville a été certifié, pour la première fois, ISO 14001. L'obtention de la norme ISO 14001 est une reconnaissance internationale de la prise en compte de l'environnement dans l'ensemble des activités de l'entreprise. Elle est l'assurance d'une démarche d'amélioration continue et de la mise en place d'une organisation spécifique au domaine de l'environnement.

La protection de l'environnement, sur le terrain comme en laboratoire, a toujours été une priorité pour les CNPE d'EDF. Comme pour tous les sites industriels, les exigences environnementales fixées par le CNPE de Flamanville et la réglementation se sont sans cesse accrues au fil des années. Cette certification est le fruit de l'implication de l'ensemble des intervenants - personnels EDF et d'entreprises externes - dans une démarche de respect de l'environnement.

La norme ISO 14001 repose sur la mise en œuvre d'un Système de Management Environnemental (SME). Cela signifie que la performance en matière de protection de l'environnement est intégrée dans l'organisation, c'est-à-dire dans toutes les décisions quotidiennes du CNPE de Flamanville. L'ensemble des salariés du CNPE, ainsi que le personnel intervenant pour le compte d'entreprises extérieures, sont impliqués dans le respect de l'environnement.

Dans le cadre de l'amélioration continue, le CNPE de Flamanville a mis en place un système permettant de détecter, tracer, déclarer, les Événements Significatifs pour l'Environnement (ESE) à l'Autorité de Sûreté Nucléaire, de traiter ces évènements et d'en analyser les causes profondes pour les éradiquer.

La déclaration d'ESE est établie à partir de critères précis et identiques sur tout le parc nucléaire. Ces critères sont définis par l'Autorité de Sûreté Nucléaire.

1. Bilan des évènements significatifs pour l'environnement déclarés

Le tableau suivant récapitule les évènements significatifs pour l'environnement déclarés par le CNPE de Flamanville en 2020.

Typologie	Date	Description de l'évènement	Principales actions correctives
ESE2	08/01/2020	Présence d'eau à pH élevé dans une chambre à vannes sans atteinte du milieu naturel	Pose d'un drain dans toutes les chambres à vannes permettant d'évacuer l'eau de pluie en continu et ne pas stagner dans le béton
ESE6	17/06/2020	Cumul annuel d'émission de fluides frigorigènes supérieur à 100 kg	Réparation des fuites sur les raccords
ESE7	16/07/2020	Remise en cause du caractère conventionnel de boues issues de la station d'épuration liée à la présence de traces de cobalt 60	Evacuation via une filière adaptée
ESE6	03/08/2020	Cumul des émissions de gaz SF6 supérieur à 100 kg (102 kg)	Fuites technologiques
ESE6 13/10/2020		Absence de demande d'autorisation auprès de l'ASN pour les aires d'entreposage d'outillages contaminés	Régularisation administrative de l'ouvrage vis-à-vis de la réglementation ICPE

2. Bilan des incidents de fonctionnement

Le CNPE de Flamanville a eu, durant l'année 2020, des matériels indisponibles tels que :

- les dispositifs de prélèvement des bassins de rejet
- les dispositifs prélèvement des rejets permanents à la cheminée
- les dispositifs de surveillance du débit de dose gamma ambiant dans l'environnement.

Ces indisponibilités n'ont pas eu d'incidence sur la qualité de la surveillance environnementale compte tenu de la redondance de nos matériels et des remises en état rapides de ces matériels qui ont permis de limiter au maximum leur indisponibilité.

Partie II - Prélèvements d'eau

L'eau est une ressource nécessaire au fonctionnement des CNPE et partagée avec de nombreux acteurs : optimiser sa gestion et concilier les usages est donc une préoccupation importante pour EDF.

Que cette eau soit prélevée en mer, dans un cours d'eau, ou dans des nappes d'eaux souterraines, son utilisation est strictement réglementée et contrôlée par les pouvoirs publics.

Dans un CNPE, l'eau est nécessaire pour :

- refroidir les installations,
- constituer des réserves pour réaliser des appoints ou disposer de stockage de sécurité dont l'alimentation des circuits de lutte contre les incendies (usage industriel),
- alimenter les installations sanitaires et les équipements de restauration des salariés (usage domestique).

Un CNPE en fonctionnement utilise trois circuits d'eau indépendants :

- le circuit primaire pour extraire la chaleur : c'est un circuit fermé parcouru par de l'eau sous pression (155 bars) et à une température de 300° C. L'eau passe dans la cuve du réacteur, capte la chaleur produite par la réaction de fission du combustible nucléaire et transporte cette énergie thermique vers le circuit secondaire au travers des générateurs de vapeur.
- le circuit secondaire pour produire la vapeur : au contact des milliers de tubes en « U » des générateurs de vapeur, l'eau du circuit primaire transmet sa chaleur à l'eau circulant dans le circuit secondaire, lui-aussi fermé. L'eau de ce circuit est ainsi transformée en vapeur qui fait tourner la turbine. Celle-ci entraîne l'alternateur qui produit l'électricité. Après son passage dans la turbine, la vapeur repasse à l'état liquide dans le condenseur ; cette eau est ensuite renvoyée vers les générateurs de vapeur pour un nouveau cycle.
- un troisième circuit, appelé « circuit de refroidissement » : pour condenser la vapeur et évacuer la chaleur, le circuit de refroidissement comprend un condenseur, appareil composé de milliers de tubes dans lesquels circule de l'eau froide prélevée dans la rivière ou la mer. Au contact de ces tubes, la vapeur se condense. Ce circuit de refroidissement est différent selon la situation géographique du CNPE :
 - o en bord de mer ou d'un fleuve à grand débit, les CNPE fonctionnent avec un circuit de refroidissement totalement ouvert.
 - De l'eau (environ 50 m³ par seconde) est prélevée pour assurer le refroidissement des équipements via le condenseur. Une fois l'opération de refroidissement effectuée, l'eau qui n'est jamais entrée en contact avec la radioactivité, est intégralement restituée dans la mer ou le fleuve, à une température légèrement plus élevée.
 - o sur les fleuves ou les rivières dont le débit est plus faible, les CNPE fonctionnent avec un circuit en partie fermé.
 - Le refroidissement de l'eau chaude issue du condenseur se fait par échange thermique avec de l'air ambiant dans une grande tour réfrigérante atmosphérique appelée « aéroréfrigérant ». Une partie de l'eau chaude se

vaporise sous forme d'un panache visible, , au sommet de la tour. Cette vapeur d'eau n'est pas une fumée, elle ne contient pas de CO2. Le reste de l'eau refroidie retourne dans le condenseur. Ce système avec aéroréfrigérants permet donc de réduire considérablement les prélèvements d'eau qui sont de l'ordre de 2 m3 par seconde.

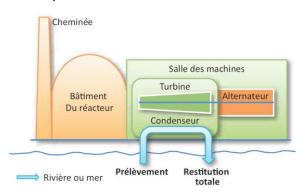


Figure 3 : Schéma d'un CNPE avec un circuit de refroidissement ouvert (Source : EDF)

Annuellement, en moyenne, le volume d'eau nécessaire au fonctionnement du circuit de refroidissement d'un réacteur est compris entre 50 millions de mètres cubes (si le refroidissement est assuré par un aéroréfrigérant) et 1 milliard de mètres cubes (si l'eau est rejetée directement dans le milieu naturel) soit respectivement un besoin de 6 à 160 litres d'eau prélevés pour produire 1 kWh.

Que les CNPE soient en fonctionnement ou à l'arrêt, la grande majorité de l'eau prélevée est restituée à sa source, c'est-à-dire au milieu naturel à proximité du point de prélèvement. Plus précisément, quasiment 100% de l'eau prélevée est restituée au fleuve ou à la mer pour les installations en circuit ouvert.

Les besoins en eau d'un CNPE servent majoritairement à assurer son refroidissement et, donc, à produire de l'électricité. Cependant, comme tous les sites industriels, un CNPE a besoin d'eau pour :

- faire face, si besoin, à un incendie : l'ensemble des CNPE d'EDF est équipé d'un important réseau d'eau sous pression permettant aux équipes des services de conduite et de la protection des CNPE d'EDF d'intervenir dès la détection d'un incendie jusqu'à l'arrivée des secours externes, et ainsi en limiter sa propagation. Ces réseaux sont régulièrement testés afin de s'assurer de leur fonctionnement et de leur efficacité.
- se laver, boire et se restaurer : selon leur importance (de 2 à 6 réacteurs), les CNPE d'EDF accueillent de 600 à 2 000 salariés permanents (EDF et entreprises extérieures) auxquels s'ajoutent, lors d'un arrêt d'un réacteur pour maintenance, près de 1000 personnes supplémentaires. Les besoins en eau potable sont en permanence adaptés aux effectifs de salariés permanents et temporaires, tant pour les sanitaires que pour la restauration. Les CNPE d'EDF peuvent être reliées aux réseaux d'eau potable des communes sur lesquelles elles sont implantées.

I. Prélèvement d'eau destinée au refroidissement

Le tableau ci-dessous détaille le cumul mensuel du prélèvement d'eau destinée au refroidissement de l'année 2020.

	Prélèvement d'eau (en millions de m³)
Janvier	180
Février	161
Mars	82,1
Avril	92,6
Mai	114
Juin	86,1
Juillet	91
Août	116
Septembre	95,5
Octobre	146
Novembre	115
Décembre	120
TOTAL	1399

II. Prélèvement d'eau destinée à l'usage industriel

Le tableau ci-dessous détaille le cumul mensuel du prélèvement d'eau destinée à l'usage industriel de l'année 2020.

	Prélèvement d'eau (en milliers de m³)
Janvier	1500
Février	1200
Mars	1342
Avril	1812
Mai	1427
Juin	1382
Juillet	1377
Août	1652
Septembre	843
Octobre	624
Novembre	869
Décembre	737
TOTAL	14765

III. Prélèvement d'eau destinée à l'usage domestique

Le tableau ci-dessous détaille le cumul mensuel du prélèvement d'eau destiné à l'usage domestique de l'année 2020.

	Prélèvement d'eau (en m³)
Janvier	8972
Février	7544
Mars	6674
Avril	5325
Mai	6000
Juin	6639
Juillet	7099
Août	7391
Septembre	7276
Octobre	7600
Novembre	8250
Décembre	7549
TOTAL	72172

IV. Milieu de prélèvement : comparaison pluriannuelle, prévisionnel, valeurs limites et maintenance

1. Comparaison pluriannuelle et au prévisionnel des prélèvements d'eau pour 2020

Le tableau ci-dessous permet un comparatif des valeurs de prélèvement des années 2018 à 2020 avec la valeur du prévisionnel 2020.

Année	Milieu	Volume (milliers de m³)
2018		1 998 000
2019	Eaux marines	1 791 000
2020	Laux IIIaiiiies	1 399 000
Prévisionnel 2020		2 560 000
2018	Eaux douces superficielles	571
2019		943
2020		772
Prévisionnel 2020		610
2018		110
2019	Eaux à usage domestique	75
2020		72
Prévisionnel 2020		97

Commentaires:

Le volume annuel d'eau marine prélevé est bien en deçà du prévisionnel qui avait été définit pour l'année 2020, compte tenu du temps réduit de fonctionnement des tranches par rapport aux prévisions de production.

En revanche, le volume d'eau douce superficielle prélevé est au-delà du prévisionnel en raison de l'indisponibilité de la station de déminéralisation d'eau de mer. L'appoint en eau déminéralisée du CNPE a été assuré majoritairement par la station de déminéralisation d'eau douce pour l'année 2020.

2. Comparaison aux valeurs limites

Le tableau ci-dessous permet un comparatif des débits instantanés et des volumes d'eau prélevés cette année avec les valeurs limites de prélèvement fixées par la décision ASN n° 2018-DC-0640 pour les eaux douces superficielles.

Origine	Débit de p	prélèvement (L/s)	Prélèvement	Débit réservé
Origine	Régime normal	Régime exceptionnel (1)	annuel total	(L/s)
Grand Douet	31	31		23
Petit Douet	45	83	1.10 ⁶ m ^{3 (2)}	16
Dielette	45	68		53

⁽¹⁾ Le prélèvement maximal n'est applicable que lorsqu'une des deux stations de pompage est indisponible (Station de pompage de Siouville : Petit et Grand Douet, station de la Diélette).

Commentaires : Les valeurs maximales observées sont inférieures aux limites autorisées.

3. Principales opérations de maintenance intervenues sur les équipements et ouvrages de prélèvements

Les tambours filtrants des stations de pompage de Dielette et du Petit Douet ont dû être remplacés de manière réactive.

4. Opérations exceptionnelles de prélèvements

Le CNPE de Flamanville n'a pas réalisé d'opération exceptionnelle de prélèvement d'eau dans les différents milieux en 2020.

⁽²⁾ Le prélèvement annuel total peut-être augmenté de 6x10⁴ m³ par mois d'indisponibilité de l'unité de dessalement (hors période de maintenance), après accord de l'Autorité de sûreté nucléaire, dans la limite de 1,8x10⁵ m³.

Partie III – Restitution et consommation d'eau

I. Restitution d'eau

La restitution d'eau du CNPE de Flamanville pour l'année 2020 est présentée dans le tableau ci-dessous.

			Restitution d'eau	
		Eau de refroidissement (millions de m³)	Rejets radioactifs (milliers de m³)	Rejets industriels (milliers de m³)
	Janvier	180	19,70	1426
	Février	161	20,35	1146
	Mars	82,1	13,65	1288
	Avril	92,6	12,70	1762
	Mai	114	10,80	1345
Restitution	Juin	86,1	6,91	1302
mensuelle	Juillet	91	3,39	1318
	Août	116	7,93	1603
	Septembre	95,5	11,80	796
	Octobre	146	18,52	585
	Novembre	115	26,54	798
	Décembre	120	39,60	651
	Restitution au milieu aquatique	1 399	191,88	14020
TOTAL par type de restitution	Pourcentage de restitution d'eau au milieu aquatique par rapport au prélèvement	100%	24,8%	99,6%
	Restitution au milieu aquatique	1413 millions de m³		
TOTAL	Pourcentage de restitution d'eau au milieu aquatique par rapport au prélèvement		99.95%	

II. Consommation d'eau

La consommation d'eau correspond à la différence entre la quantité d'eau prélevée et la quantité d'eau restituée au milieu aquatique. Le tableau ci-dessous détaille le cumul mensuel de consommation d'eau de l'année 2020

	Consommation d'eau (en milliers de m3)
Janvier	64
Février	41
Mars	47
Avril	42

Mai	77
Juin	80
Juillet	62
Août	48
Septembre	43
Octobre	29
Novembre	53
Décembre	54
TOTAL	640

Partie IV - Rejets d'effluents

Comme beaucoup d'autres activités industrielles, l'exploitation d'un CNPE entraîne des rejets d'effluents à l'atmosphère et par voie liquide. Une réglementation stricte encadre ces différents rejets, qu'ils soient radioactifs ou non.

Chaque CNPE a mis en place une organisation afin d'assurer une gestion optimisée des effluents visant notamment à :

- réduire à la source la production d'effluents, notamment par le recyclage,
- réduire les rejets de substances radioactives ou chimiques au moyen de traitements appropriés,
- optimiser la production de déchets et valoriser les déchets conventionnels qui peuvent l'être.

Les rejets d'effluents se présentent sous différentes formes :

- les rejets radioactifs liquides et atmosphériques, qui peuvent contenir :
 - o Tritium,
 - o Carbone 14,
 - o lode.
 - o Autres produits de fission ou d'activation,
 - Gaz rares.
- les rejets chimiques liquides classés en deux catégories :
 - les rejets de substances chimiques associées aux effluents radioactifs liquides ou eaux non radioactives issues des salles des machines,
 - les rejets de produits issus des autres circuits non radioactifs (circuit de refroidissements des condenseurs, station de déminéralisation, station d'épuration).
- les rejets chimiques atmosphériques : un CNPE émet peu de substances chimiques par voie atmosphérique. Les émissions proviennent des groupes électrogènes de secours constitués de moteurs diesels ou de turbines à combustion consommant du gasoil, de pertes de fluides frigorigènes, du renouvellement de calorifuges dans le bâtiment réacteur et d'émanations de certaines substances volatiles utilisées pour la protection et le traitement des circuits.
- les rejets thermiques : quel que soit le mode de refroidissement (ouvert ou fermé) d'un CNPE, l'échauffement du milieu aquatique est limité par la réglementation propre à chaque CNPE.

Optimisés, réduits, traités et surveillés, les rejets d'effluents radioactifs atmosphériques et liquides génèrent une exposition des populations plus de 100 fois inférieure à la limite réglementaire d'exposition reçue par une personne du public fixée à 1mSv/an dans l'article R1333-8 du code de la santé publique

I. Rejets d'effluents à l'atmosphère

1. Rejets d'effluents à l'atmosphère radioactifs

Il existe deux sources de rejets d'effluents radioactifs à l'atmosphère :

- les effluents dits « hydrogénés » proviennent du dégazage des effluents liquides issus du circuit primaire. Afin d'éviter tout mélange avec l'oxygène de l'air, ces effluents

hydrogénés sont collectés et stockés, au minimum 30 jours dans des réservoirs où une surveillance régulière est effectuée. Durant ce temps, la radioactivité décroît naturellement, ce qui réduit d'autant l'impact environnemental. Les effluents sont contrôlés avant leur rejet. Pendant leur rejet, ils subissent systématiquement des traitements tels que la filtration à Très Haute Efficacité (filtres THE) qui permet de retenir les poussières radioactives. Ces rejets occasionnels sont dits « concertés ».

Les effluents dits « aérés » qui proviennent de la collecte des évents des circuits de traitement des effluents liquides radioactifs, de la dépressurisation du bâtiment du réacteur ainsi que de l'air de la ventilation des locaux de l'îlot nucléaire. La ventilation maintient les locaux en légère dépression par rapport à l'extérieur et évite ainsi les pertes de gaz ou de poussières contaminées vers l'environnement. Les opérations de dépressurisation de l'air du bâtiment réacteur conduisent à des rejets dits « concertés ». L'air de ventilation transite par des filtres THE et, dans certains circuits, sur des pièges à iodes à charbon actif avant d'être rejeté en continu à la cheminée. Ces rejets sont dits « permanents ».

Ces deux types d'effluents sont rejetés dans l'atmosphère par une cheminée dédiée à la sortie de laquelle est réalisé, en permanence, un contrôle de l'activité rejetée.

Les cinq catégories de radionucléides réglementés dans les rejets d'effluents à l'atmosphère sont les gaz rares, le tritium, le carbone 14, les iodes et les autres produits de fission (PF) et produits d'activation (PA) :

- Les principaux gaz rares issus de la réaction de fission sont le xénon 133, le xénon 135, le krypton 85 et le xénon 131. Ce sont des gaz inertes, ils ne sont donc pas retenus par les systèmes de filtration (filtres très haute efficacité THE et pièges à iodes).
- Le tritium est un isotope radioactif de l'hydrogène. C'est un émetteur bêta (électron) de faible énergie. Il est rejeté par les CNPE et est très majoritairement issu de l'activation neutronique d'éléments tels que le bore 10 et le lithium 6 présents dans le fluide primaire.
- Le carbone 14 présent dans les rejets des CNPE est produit essentiellement par activation de l'oxygène 17 présent dans l'eau du circuit primaire. Une part plus faible est produite par l'activation de l'azote 14 dissous dans l'eau du circuit primaire.
- Les iodes présents dans les rejets d'effluents radioactifs du CNPE (principalement l'iode 131 et l'iode 133) sont des produits de fission, créés dans le combustible par fission des atomes d'uranium ou de plutonium.
- Les autres produits de fission (PF) et produits d'activation (PA) émetteurs β ou γ , correspondent principalement au césium et au cobalt.

a. Règles spécifiques de comptabilisation

Ces règles s'appuient en premier lieu sur la définition de « spectres de référence », en fonction du type de rejet (liquides ou atmosphériques). Ces rejets sont constitués d'une liste de radionucléides à identifier par les moyens de mesure adéquats. Cette liste a été déterminée par une étude réalisée de 1996 à 1999 sur l'ensemble du parc des CNPE d'EDF. Toutes les substances figurant dans plus de 90 % des analyses figurent dans cette liste. Des radionucléides comme l'iode, peu présent dans les rejets, figurent également dans cette liste, mais pour des raisons historiques.

La deuxième règle fondamentale consiste à déclarer obligatoirement une activité rejetée pour les radionucléides appartenant à ces différents « spectres de référence ». Les

radionucléides dont l'activité mesurée est inférieure au seuil de décision¹ donnent lieu à une comptabilisation d'activité rejetée égale au SD.

Les cumuls mensuels sont établis par sommation des activités rejetées pour chacun des rejets d'effluents du mois considéré. Les cumuls annuels sont égaux à la somme des cumuls mensuels.

b. Spectre de référence des rejets radioactifs à l'atmosphère

Le bilan des rejets d'effluents réalisés à l'atmosphère est déterminé pour chacune des cinq familles de radionucléides réparties comme suit :

- les gaz rares,
- le Tritium,
- le Carbone 14,
- les lodes,
- les autres produits de fission ou d'activation émetteurs bêta et/ou gamma (PF-PA).

Le tableau ci-dessous est un rappel du spectre de référence des rejets radioactifs à l'atmosphère.

Paramètres	Radionucléide
	⁴¹ Ar
	⁸⁵ Kr
Gaz rares	^{131m} Xe
	¹³³ Xe
	¹³⁵ Xe
Tritium	³ H
Carbone 14	¹⁴ C
ladaa	131
lodes	133
	⁵⁸ Co
Produits de fission et	⁶⁰ Co
d'activation	¹³⁴ Cs
	¹³⁷ Cs

c. Cumul mensuel

Les cumuls mensuels des rejets d'effluents radioactifs à l'atmosphère sont donnés dans le tableau suivant.

¹ D'après le Bilan de l'état radiologique de l'environnement français de l'IRSN : « Le seuil de décision est la valeur minimale que doit avoir la mesure d'un échantillon pour que le métrologiste puisse « décider » que cette activité est présente et donc mesurée. En dessous de cette valeur, l'activité de l'échantillon est donc trop faible pour être estimée. Ce seuil de décision dépend de la performance et du rayonnement ambiant autour des moyens métrologiques utilisés. »

	⁴¹ Ar	⁸⁵ Kr	^{131m} Xe	¹³³ Xe	¹³⁵ Xe	131	133	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs	¹³⁷ Cs
	(GBq)	(GBq)	(GBq)	(GBq)	(GBq)	(GBq)	(GBq)	(GBq)	(GBq)	(GBq)	(GBq)
Janvier	/	/	/	3,649 ^E 1	1,656 ^E 1	1,931 ^E -4	8,763 ^E -4	2,118 ^E -5	2,232 ^E -5	1,973 ^E -5	2,256 ^E -5
Février	/	1,526 ^E -3	2,058 ^E -4	3,218 ^E 1	1,499 ^E 1	1,945 ^E -4	1,180 ^E -3	1,940 ^E -5	2,124 ^E -5	1,883 ^E -5	2,118 ^E -5
Mars	/	/	/	3,470 ^E 1	1,627 ^E 1	1,963 ^E -4	1,001 ^E -3	1,468 ^E -4	2,291 ^E -5	1,948 ^E -5	2,163 ^E -5
Avril	/	/	/	3,188 ^E 1	1,451 ^E 1	4,766 ^E -3	1,135 ^E -3	2,006 ^E -5	2,105 ^E -5	1,853 ^E -5	2,049 ^E -5
Mai	/	6,555 ^E -4	9,430 ^E -5	3,475 ^E 1	1,653 ^E 1	2,499 ^E -4	9,446 ^E -4	1,838 ^E -5	2,015 ^E -5	1,906 ^E -5	1,953 ^E -5
Juin	/	/	/	3,414 ^E 1	1,543 ^E 1	2,099 ^E -4	1,088 ^E -3	1,920 ^E -5	2,142 ^E -5	1,895 ^E -5	2,052 ^E -5
Juillet	/	/	/	3,459 ^E 1	1,655 ^E 1	1,998 ^E -4	1,058 ^E -3	1,915 ^E -5	2,102 ^E -5	1,871 ^E -5	2,169 ^E -5
Août	/	/	/	3,018 ^E 1	1,948 ^E 1	1,767 ^E -4	1,023 ^E -3	2,329 ^E -5	2,566 ^E -5	2,495 ^E -5	2,514 ^E -5
Septembre	/	/	/	2,560 ^E 1	1,823 ^E 1	6,812 ^E -4	1,041 ^E -3	3,018 ^E -5	3,577 ^E -5	3,438 ^E -5	3,055 ^E -5
Octobre	/	1,048 ^E -3	1,119 ^E -4	3,180 ^E 1	1,932 ^E 1	1,789 ^E -4	9,581 ^E -4	2,896 ^E -5	3,362 ^E -5	3,238 ^E -5	3,061 ^E -5
Novembre	2,365 ^E -2	/	/	3,224 ^E 1	1,952 ^E 1	1,824 ^E -4	9,879 ^E -4	2,851 ^E -5	3,444 ^E -5	3,095 ^E -5	3,071 ^E -5
Décembre	4,860 ^E -1	/	9,240 ^E -3	2,235 ^E 1	1,823 ^E 1	1,074 ^E -4	6,342 ^E -4	2,087 ^E -5	2,711 ^E -5	2,759 ^E -5	2,352 ^E -5
TOTAL ANNUEL	5,097 ^E -1	3,230 ^E -3	9,652 ^E -3	3,809 ^E 2	2,056 ^E 2	7,336 ^E -3	1,193 ^E -2	3,960 ^E -4	3,067 ^E -4	2,835 ^E -4	2,881 ^E -4

	Volumes rejetés (m³)	Activités gaz rares (GBq)	Activité Tritium (GBq)	Activité Carbone 14 (GBq)	Activités lodes (GBq)	Activités Autres PF et PA (GBq)
Janvier	4,27 ^E 8	5,31 ^E 1	5,29 ^E 1		1,07 ^E -3	8,58 ^E -5
Février	3,95 ^E 8	4,72 ^E 1	4,77 ^E 1	1,94 ^E 1	1,38 ^E -3	8,07 ^E -5
Mars	4,30 ^E 8	5,10 ^E 1	3,74 ^E 1		1,20 ^E -3	2,11 ^E -4
Avril	4,00 ^E 8	4,64 ^E 1	5,07 ^E 1		5,90 ^E -3	8,01 ^E -5
Mai	4,20 ^E 8	5,13 ^E 1	6,94 ^E 1	2,99 ^E 1	1,20 ^E -3	7,71 ^E -5
Juin	3,91 ^E 8	4,96 ^E 1	6,37 ^E 1		1,30 ^E -3	8,01 ^E -5
Juillet	4,08 ^E 8	5,11 ^E 1	7,19 ^E 1		1,26 ^E -3	8,06 ^E -5
Août	4,07 ^E 8	4,97 ^E 1	8,10 ^E 1	2,36 ^E 1	1,20 ^E -3	9,90 ^E -5
Septembre	3,81 ^E 8	4,38 ^E 1	6,48 ^E 1		1,72 ^E -3	1,31 ^E -4
Octobre	3,90 ^E 8	5,11 ^E 1	8,58 ^E 1		1,14 ^E -3	1,26 ^E -4
Novembre	3,83 ^E 8	5,18 ^E 1	5,37 ^E 1	2,47 ^E 1	1,17 ^E -3	1,25 ^E -4
Décembre	3,90 ^E 8	4,11 ^E 1	4,87 ^E 1		7,42 ^E -4	9,91 ^E -5
TOTAL ANNUEL	4,82 ^E 9	5,87 ^E 2	7,28 ^E 2	9,75 ^E 1	1,93 ^E -2	1,27 ^E -3

Il a été vérifié que les rejets ne présentent pas d'activité volumique alpha globale d'origine artificielle supérieure aux seuils de décision.

Il a été vérifié que les rejets au niveau des cheminées annexes ne présentent pas d'activité volumique bêta globale d'origine artificielle supérieure à 1.10⁻³ Bq/m³.

d. Comparaison pluriannuelle et au prévisionnel

Le tableau ci-dessous permet un comparatif des valeurs de rejets de l'année 2020 avec les valeurs des années précédentes et celles du prévisionnel 2020.

	Rejets par catégorie de radionucléides (GBq)								
Année	Gaz rares Tritium		Carbone 14	lodes	Autres produits de fission et d'activation				
2018	4,16 ^E 2	8,12 ^E 2	2,81 ^E 2	1,63 ^E -2	2,93 ^E -3				
2019	5,64 ^E 2	9,10 ^E 2	1,63 ^E 2	1,56 ^E -2	9,29 ^E -4				
2020	5,87 ^E 2	7,28 ^E 2	9,75 ^E 1	1,93 ^E -2	1,27 ^E -3				
Prévisionnel 2020	7,50 ^E 2	1,30 ^E 3	4,00 ^E 2	3,00 ^E -2	2,00 ^E -3				

<u>Commentaires</u>: Les rejets radioactifs à l'atmosphère sont cohérents avec les valeurs du prévisionnel 2020.

e. Comparaison aux valeurs limites

Le tableau ci-dessous permet un comparatif des valeurs de rejets de l'année 2020 avec les valeurs limites de rejets fixées par la décision ASN n° 2018-DC-0639.

		Limites annuelles de	rejet	Rejet
Paramètres	Localisation prélèvement	Prescriptions	Valeur	Valeur maximale
0	Installation	Activité annuelle rejetée (GBq)	40 000	5,87 ^E 2
Gaz rares	Cheminée n° 1	Débit instantané (Bq/s)	1,0 ^E 7	1,64 ^E 5
	Cheminée n° 2	Debit instantante (bq/s)	1,0 7	2,06 ^E 5
Carbone 14	Installation	Activité annuelle rejetée (GBq)	2 300	9,75 ^E 1
T :::	Installation	Activité annuelle rejetée (GBq)	11 000	7,28 ^E 2
Tritium	Cheminée n° 1	Débit instantané (Bq/s)	1,2 ^E 6	3,53 ^E 4
	Cheminée n° 2	Debit instantane (bq/s)	1,2 0	1,92 ^E 4
ladas	Installation	Activité annuelle rejetée (GBq)	1,0	1,93 ^E -2
lodes	Cheminée n° 1	Débit instantané (Bq/s)	1,1 ^E 2	3,48
	Cheminée n° 2	Debit instantante (bq/s)	1,1 2	8,48 ^E -1
Autres produits de	Installation	Activité annuelle rejetée (GBq)	0,15	1,27 ^E -3
fission et	Cheminée n° 1			2,25 ^E -1
produits d'activation	Cheminée n° 2	Débit instantané (Bq/s)	1,1 ^E 2	3,25 ^E -2

<u>Commentaires</u>: Les rejets radioactifs à l'atmosphère respectent les valeurs limites de rejets de la décision ASN n°2018-DC-0639 Les débits instantanés ont respecté les valeurs de la décision ASN n°2018-DC-0640 tout au long de l'année 2020.

2. Evaluation des rejets diffus d'effluents radioactifs à l'atmosphère

Les rejets radioactifs diffus ont notamment pour origine :

- les évents de réservoirs d'entreposage des effluents radioactifs (T, S), le réservoir de stockage de l'eau borée pour le remplissage des piscines,
- les rejets de vapeur du circuit secondaire par le système de décharge à l'atmosphère, susceptibles de renfermer de la radioactivité en cas d'inétanchéité des tubes de générateurs de vapeur.

Ces rejets, ne transitant pas par la cheminée instrumentée, sont dits « diffus », et font l'objet d'une estimation mensuelle par calcul visant notamment à s'assurer de leur caractère négligeable.

Les cumuls mensuels des rejets diffus d'effluents radioactifs à l'atmosphère est donnée dans le tableau suivant.

	Rejets	de vapeur du secondaire	circuit	Rejets au niveau des évents des réservoirs d'eau de refroidissement des piscines et d'entreposage des effluents liquides		
	Volume (m³)	Tritium (Bq)	lodes (Bq)	Tritium (Bq)	lodes (Bq)	
Janvier	2	1,88 ^E 5	0	1,80 ^E 7	0	
Février	2	1,88 ^E 5	0	1,06 ^E 7	0	
Mars	2	1,88 ^E 5	0	4,71 ^E 6	0	
Avril	2	1,92 ^E 5	0	6,34 ^E 6	0	
Mai	2	1,92 ^E 5	0	1,67 ^E 7	0	
Juin	2	1,67 ^E 5	0	7,13 ^E 6	0	
Juillet	2	1,58 ^E 5	0	2,61 ^E 7	0	
Août	2	1,61 ^E 5	0	2,55 ^E 7	0	
Septembre	2	1,61 ^E 5	0	7,49 ^E 6	0	
Octobre	2360	1,90 ^E 7	0	5,84 ^E 6	0	
Novembre	6260	5,96 ^E 7	0	2,43 ^E 7	0	
Décembre	1010	1,43 ^E 7	0	1,20 ^E 7	0	
TOTAL ANNUEL	9648	9,45 ^E 7	0	1,65 ^E 8	0	

3. Evaluation des rejets diffus d'effluents à l'atmosphère non radioactifs

Les CNPE engendrent également des rejets d'effluents à l'atmosphère non radioactifs dont les origines sont :

- Le lessivage chimique des générateurs de vapeur : l'encrassement des générateurs de vapeur peut nécessiter un lessivage chimique à l'origine de rejets chimiques à l'atmosphère (ammoniac...) qui nécessitent une autorisation administrative ; ces rejets sont, soit mesurés, soit estimés par calcul en fonction des quantités de produits chimiques utilisés.
- Les émissions des groupes électrogènes de secours : les groupes électrogènes de secours composés de moteurs diesel, les Turbines à Combustion (TAC) et les Diesels d'Ultime Secours (DUS) fonctionnant au gasoil sont destinés uniquement à alimenter des systèmes de sécurité et/ou à prendre le relais de l'alimentation électrique principale en cas de défaillance de celle-ci. Ils ont donc un rôle majeur en termes de sûreté nucléaire. Les émissions des gaz de combustion (SO2, NOX) de ces matériels de petites puissances sont faibles sachant qu'ils ne fonctionnent que peu de temps (moins de 50 h/an par diesel) lors des essais périodiques ou d'incidents.
- Les émissions de fluides frigorigènes. En effet, un CNPE est équipée de groupes frigorifiques pour assurer la production d'eau glacée et pour la réfrigération des locaux techniques et administratifs. Ces matériels utilisent des produits pouvant accroître l'effet de serre. Le fonctionnement des matériels et les opérations de maintenance conduisent à des émissions de fluides frigorigène. Ces émissions sont réglementairement déclarées et comptabilisées et des actions sont prises pour remédier à la situation.

- Les opérations de maintenance effectuées dans les bâtiments réacteur des CNPE : Lors de ces opérations, une quantité plus ou moins importante de calorifuges est changée par des produits neufs. Pendant les phases de montée en température correspondant à la remise en service des installations, certains types de calorifuges émettent, par dégradation thermique, des vapeurs formolées dans l'enceinte, qui peuvent être à l'origine de rejets de monoxyde de carbone.
- Le conditionnement de circuit à l'arrêt : à l'occasion des arrêts de tranche pour une durée supérieure à une semaine, la conservation humide des générateurs de vapeur permet de s'affranchir du risque de corrosion des matériaux constitutifs et de disposer d'une barrière biologique (écran d'eau) pour réaliser des travaux environnants. Les générateurs de vapeur sont alors remplis avec de l'eau déminéralisée conditionnée à l'hydrazine et additionnée avec de l'ammoniaque dans des proportions définies dans les spécifications chimiques de conservation à l'arrêt.

a. Rejets d'oxyde de soufre et d'azote

La quantité annuelle évaluée d'oxyde de soufre (SOx) et d'azote (NOx) rejetée dans l'atmosphère lors du fonctionnement périodique est basée sur les temps de fonctionnement des équipements suivants:

- des groupes électrogènes de secours (moteurs Diesels) ayant fonctionné pendant
 307 heures,
- des turbines à combustion (TAC) ayant fonctionné pendant 25 heures
- diesels d'ultime secours (DUS) ayant fonctionné pendant 80 heures,

Au total, sur les 3 tranches, l'estimation des rejets pour 2020 est de :

Paramètre	Unité	Groupes électrogènes	TAC DUS	TOTAL
SOx	kg	8	117	125
NOx	kg	73668	102430	176098

b. Rejets de formaldéhyde et de monoxyde de carbone

En 2020, 3 m³ de calorifuges dans les enceintes des bâtiments réacteurs 1 et 2 ont été renouvelés.

Ce volume donne une estimation des concentrations maximales ajoutées dans l'atmosphère.

Concentration calculée	Unité	Paramètres	EBA	ETY
Concentration maximale ajoutée dans l'atmosphère		Formaldéhyde	4,96 ^E -4	1,12 ^E -5
	mg/m³	Monoxyde de carbone	4,63 ^E -4	1,05 ^E -5

c. Rejets de substances volatiles en lien avec le conditionnement de circuits à l'arrêt

L'estimation du rejet des espèces volatiles est la suivante :

Paramètre	Unité	TOTAL			
Ammoniac					
Ethanolamine	kg	1			

d. Bilan des émissions gaz à effet de serre et de fluides frigorigènes

Un bilan des émissions de gaz à effet de serre et de fluides frigorigènes est réalisé annuellement par le CNPE de 2020.

L'estimation des émissions de gaz à effet de serre et de fluides frigorigènes est la suivante :

Paramètre	Unité	TOTAL
Chloro-fluoro-carbone (CFC)		0
Hydrogéno-chloro-fluor-carbone (HCFC)	V.a.	0
Hydrogéno-fluoro-carbone (HFC)	- Kg	242,8
Hexafluorure de soufre (SF6)		224,8

4. Principales opérations de maintenance intervenues sur les équipements et ouvrages de rejets d'effluents à l'atmosphère

L'année 2020 n'a pas été concernée par des actions de maintenance (hors maintenance programmée) et aucune intervention ou opération de maintenance anticipée n'ont été nécessaires.

5. Opérations exceptionnelles de rejets d'effluents à l'atmosphère

Le CNPE de Flamanville n'a pas réalisé d'opération exceptionnelle de rejets d'effluents à l'atmosphère en 2020.

II. Rejets d'effluents liquides

1. Rejets d'effluents liquides radioactifs

Lorsque l'on exploite un CNPE en fonctionnement, des effluents liquides radioactifs sont produits :

- Les effluents provenant du circuit primaire dits « effluents primaires hydrogénés » contiennent des gaz de fission (xénons, iodes, césiums, ...) et des produits d'activation (cobalts, manganèse, tritium, carbone 14...) et de fission. Ces effluents sont essentiellement produits en phase d'exploitation du fait des mouvements d'eau primaire effectués lors des variations de puissance ou de l'ajustement des paramètres chimiques de l'eau du réacteur...).

Les effluents issus des circuits auxiliaires dits « effluents usés » constituent le reste des effluents. Ils résultent principalement des opérations de maintenance nécessitant des vidanges de circuit (filtres, déminéraliseurs, échangeurs...), des opérations d'évacuation du combustible usé et de conditionnement des résines usées, des actions de maintien de la propreté des installations (lavage du sol et du linge).

La totalité de ces effluents est collectée, puis traitée, pour retenir l'essentiel de la radioactivité.

Les effluents issus du circuit primaire sont dirigés vers le circuit de Traitement des Effluents Primaires (TEP). Celui-ci comprend une chaîne de filtration et de déminéralisation, un dégazeur permettant d'envoyer les gaz dissous vers le système de Traitement des Effluents Gazeux (TEG), et une chaîne d'évaporation permettant de séparer l'effluent traité en un distillat (eau) d'activité volumique faible pouvant être recyclé ou rejeté le cas échéant, et en un concentrat renfermant le bore, qui est généralement recyclé vers le circuit primaire.

Les effluents liquides oxygénés recueillis dans les puisards des différents locaux sont dirigés vers le circuit de Traitement des Effluents Usés (TEU) où ils sont traités. Collectés sélectivement suivant plusieurs catégories (résiduaires, chimiques, planchers, servitudes), le traitement de ces effluents, approprié à leurs caractéristiques physico-chimiques, peut se faire:

- par filtration et déminéralisation (résines échangeuses d'ions) permettant de retenir l'essentiel de la radioactivité,
- sur chaîne d'évaporation, permettant d'obtenir d'une part un distillat épuré chimiquement et d'activité faible, et d'autre part un concentrat composé principalement d'acide borique,
- par filtration pour les drains de planchers et servitudes (laverie, douches...) peu radioactifs.

Les effluents sont ensuite acheminés vers des réservoirs d'entreposage dénommés réglementairement T ou S, où ils sont analysés, sur le plan radioactif et sur le plan chimique, avant d'être rejetés, en respectant la réglementation.

Les eaux issues des salles des machines (groupe turbo-alternateur) ne sont pas considérées comme des effluents radioactifs au sens de la réglementation (article 2.3.3 de la décision n°2017-DC-0588). Ces eaux sont collectées sans traitement préalable vers des réservoirs dénommés réglementairement Ex où elles sont contrôlées avant d'être rejetées.

a. Règles spécifiques de comptabilisation

Ces règles s'appuient en premier lieu sur la définition de « spectres de référence », en fonction du type de rejet (liquides ou atmosphériques). Ces rejets sont constitués d'une liste de radionucléides à identifier par les moyens de mesure adéquats. Cette liste a été déterminée par une étude réalisée de 1996 à 1999 sur l'ensemble du parc des CNPE d'EDF. Toutes les substances figurant dans plus de 90 % des analyses figurent dans cette liste. Des radionucléides comme l'iode, peu présent dans les rejets, figurent également dans cette liste, mais pour des raisons historiques.

La deuxième règle fondamentale consiste à déclarer obligatoirement une activité rejetée pour les radionucléides appartenant à ces différents « spectres de référence ». Les

radionucléides dont l'activité mesurée est inférieure au seuil de décision¹ donnent lieu à une comptabilisation d'activité rejetée égale au SD.

Les cumuls mensuels sont établis par sommation des activités rejetées pour chacune des catégories d'effluents du mois considéré (T, S, Ex). Les cumuls annuels sont égaux à la somme des cumuls mensuels.

b. Spectre de référence des rejets d'effluents radioactifs liquides

Le bilan des rejets d'effluents radioactifs liquides est déterminé pour chacune des quatre familles de radionucléides réparties comme suit :

- le Tritium,
- le Carbone 14,
- les lodes.
- les autres produits de fission ou d'activation émetteurs bêta et/ou gamma (PF-PA).

Le tableau ci-dessous est un rappel du spectre de référence des rejets radioactifs liquides.

Paramètres	Radionucléide
Tritium	³ H
Carbone 14	¹⁴ C
lodes	131
	⁵⁴ Mn
	⁶³ Ni
	⁵⁸ Co
	⁶⁰ Co
Produits de fission et	^{110m} Ag
d'activation	^{123m} Te
	¹²⁴ Sb
	¹²⁵ Sb
	¹³⁴ Cs
	¹³⁷ Cs

c. Cumul mensuel

Le cumul mensuel des rejets d'effluents radioactifs liquides est donné dans le tableau suivant :

¹ D'après le Bilan de l'état radiologique de l'environnement français de l'IRSN : « Le seuil de décision est la valeur minimale que doit avoir la mesure d'un échantillon pour que le métrologiste puisse « décider » que cette activité est présente et donc mesurée. En dessous de cette valeur, l'activité de l'échantillon est donc trop faible pour être estimée. Ce seuil de décision dépend de la performance et du rayonnement ambiant autour des moyens métrologiques utilisés. »

	131	⁵⁴ Mn	⁶³ Ni	⁵⁸ Co	⁶⁰ Co	^{110m} Ag	^{123m} Te	¹²⁴ Sb	¹²⁵ Sb	¹³⁴ Cs	¹³⁷ Cs
	(GBq)										
Janvier	2,661 ^E -04	2,658 ^E -04	1,295 ^E -03	2,658 ^E -04	1,158 ^E -03	2,661 ^E -04	2,206 ^E -04	2,595 ^E -04	7,459 ^E -04	2,595 ^E -04	2,854 ^E -04
Février	4,343 ^E -04	7,808 ^E -04	1,265 ^E -02	5,209 ^E -03	1,062 ^E -02	2,493 ^E -03	3,436 ^E -04	4,142 ^E -04	1,160 ^E -03	4,084 ^E -04	4,402 ^E -04
Mars	1,102 ^E -04	1,102 ^E -04	7,128 ^E -04	1,037 ^E -04	1,296 ^E -04	1,102 ^E -04	9,072 ^E -05	1,037 ^E -04	2,916 ^E -04	9,720 ^E -05	1,231 ^E -04
Avril	3,184 ^E -04	3,250 ^E -04	3,507 ^E -03	9,223 ^E -04	8,471 ^E -03	1,453 ^E -03	2,598 ^E -04	2,985 ^E -04	8,773 ^E -04	2,988 ^E -04	3,248E-01
Mai	0,000 ^E +00										
Juin	2,305 ^E -04	2,237 ^E -04	3,797 ^E -03	2,848 ^E -04	1,356 ^E -02	2,305 ^E -04	1,685 ^E -04	2,102 ^E -04	6,712 ^E -04	2,170 ^E -04	2,644 ^E -04
Juillet	2,679 ^E -04	2,485 ^E -04	2,546 ^E -03	2,551 ^E -04	2,996 ^E -03	1,583 ^E -03	2,214 ^E -04	2,568 ^E -04	7,493 ^E -04	2,441 ^E -04	2,938 ^E -04
Août	7,157 ^E -04	7,817 ^E -04	1,618 ^E -03	7,423 ^E -04	7,627 ^E -03	1,765 ^E -02	5,297 ^E -04	7,292 ^E -04	2,074 ^E -03	7,098 ^E -04	8,955 ^E -04
Septembre	4,748 ^E -04	6,768 ^E -04	8,975 ^E -03	5,203 ^E -04	9,044 ^E -03	4,165 ^E -03	3,381 ^E -04	6,114 ^E -04	9,848 ^E -03	5,723 ^E -04	7,350 ^E -04
Octobre	4,497 ^E -04	5,668 ^E -04	2,122 ^E -03	4,949 ^E -04	1,427 ^E -02	2,788 ^E -03	3,146 ^E -04	4,947 ^E -04	5,613 ^E -03	5,273 ^E -04	6,295 ^E -04
Novembre	1,008 ^E -03	1,126 ^E +00	7,490 ^E -03	1,021 ^E -03	1,544 ^E -02	1,040 ^E -02	7,183 ^E -04	1,074 ^E -03	3,711 ^E -03	1,107 ^E -03	1,536 ^E -03
Décembre	7,646 ^E -04	7,780 ^E -04	1,650 ^E -03	7,646 ^E -04	2,679 ^E -03	1,302 ^E -03	5,536 ^E -04	7,778 ^E -04	2,089 ^E -03	7,975 ^E -04	9,098 ^E -04
TOTAL ANNUEL	5,04 ^E -03	5,88 ^E -03	4,64 ^E -02	1,06 ^E -02	8,60 ^E -02	6,53 ^E -02	3,76 ^E -03	5,23 ^E -03	2,78 ^E -02	5,24 ^E -03	6,44 ^E -03

	Volumes rejetés (m³)	Activité Tritium (GBq)	Activité Carbone 14 (GBq)	Activités lodes (GBq)	Activités Autres PF et PA (GBq)
Janvier	1,97 ^E +04	5,691 ^E +00	5,366 ^E -02	2,661 ^E -04	5,998 ^E -03
Février	2,04 ^E +04	2,555 ^E +02	7,090 ^E -02	4,343 ^E -04	2,524 ^E -02
Mars	1,36 ^E +04	1,303 ^E +00	1,555 ^E -02	1,102 ^E -04	2,067 ^E -03
Avril	1,27 ^E +04	1,483 ^E +02	5,063 ^E -02	3,184 ^E -04	1,570 ^E -02
Mai	1,08 ^E +04	7,776 ^E -02	0,000E+00	0,000E+00	0,000E+00
Juin	6,91 ^E +03	1,357 ^E +02	3,593 ^E -02	2,305 E-04	4,035 ^E -02
Juillet	3,39 ^E +03	1,473 ^E +01	4,632 ^E -02	2,679 ^E -04	9,017 ^E -03
Août	7,93 ^E +03	1,819 ^E +02	4,459 ^E -02	7,157 ^E -04	3,750 E-02
Septembre	1,18 ^E +04	9,190 ^E +01	5,658 ^E -02	4,748 ^E -04	3,035 E-02
Octobre	1,85 ^E +04	3,805 ^E +01	5,911 ^E -02	4,497 ^E -04	2,929 E-02
Novembre	2,65 ^E +04	1,102 ^E +02	1,702 ^E -01	1,008 ^E +00	4,431 ^E -02
Décembre	3,96 ^E +04	5,707 ^E +02	1,280 ^E -01	7,646 ^E -04	1,685 ^E -02
TOTAL ANNUEL	1,92 ^E +05	1,55 ^E +03	6,72 ^E -01	5,04 ^E -03	2,57 ^E -01

Il a été vérifié que les rejets ne présentent pas d'activité volumique alpha globale d'origine artificielle supérieure aux seuils de décision.

<u>Commentaires</u>: La présence de tritium avec une activité volumique comprise entre 400 et 4000 Bq/L dans les rejets en provenance des réservoirs Ex (SEK) sont dues aux micros fuites primaires/secondaires présentes sur les tubes des générateurs de vapeurs.

D'autre part, la contribution de Fla3 aux rejets tritium du site représente 0,03% (présence de traces dans la vapeur fournie par Fla1/2 pour les essais à chaud).

d. Comparaison pluriannuelle et au prévisionnel

Le tableau ci-dessous permet un comparatif des valeurs de rejet de l'année 2020 avec les valeurs des années précédentes et celles du prévisionnel 2020.

	Rejets par catégorie de radionucléides (GBq)							
	Tritium Carbone 14 lodes Autres P							
2018	46 555	22,5	0,00529	0,338				
2019	25 855	12,2	0,00694	0,377				
2020	1 550	0,672	0,00504	0,257				
Prévisionnel 2020	64 000	30	0,02000	0,600				

<u>Commentaires</u>: Les rejets radioactifs liquides sont bien inférieurs aux valeurs du prévisionnel 2020. Ces valeurs s'expliquent par le prolongement de la visite décennale de la tranche 2 et le repli fortuit de la tranche 1. La tranche 2 a été couplée au mois de décembre.

e. Comparaison aux limites

Le tableau ci-dessous permet un comparatif des valeurs de rejets de l'année 2020 avec les valeurs limites de rejets fixées par la décision ASN n° 2018-DC-0639.

	Limites annuelles of	Rejet	
Paramètres	Prescriptions	Valeur	Valeur maximale (GBq)
Tritium	Activité annuelle rejetée (GBq)	145 000	1 550
Carbone 14	Activité annuelle rejetée (GBq)	280	0,672
Iodes	Activité annuelle rejetée (GBq)	0,12	0,00504
Autres PA et PF	Activité annuelle rejetée (GBq)	13	0,207

Commentaires : Les limites réglementaires de rejets ont été respectées.

f. Surveillance des eaux réceptrices

Des prélèvements d'eau de mer sont réalisés lors de chaque rejet d'effluents liquides radioactifs (à mi-rejet). Des prélèvements journaliers sont également réalisés en dehors des périodes de rejet. Plusieurs analyses sont réalisées sur ces échantillons d'eau filtrée (mesure de l'activité bêta globale, du tritium et de la teneur en potassium sur l'eau et mesures de l'activité bêta globale sur les matières en suspension). Ces analyses permettent de s'assurer du respect des valeurs d'activité volumique limites fixées par la réglementation.

Les résultats des mesures réalisées sur les eaux de surface pour l'année 2020 sont donnés dans le tableau suivant (valeurs moyennes et maximales).

		Activité volumique horaire à mi-rejet			Activité volumique : moyenne journalière			
	Paramètre analysé	Valeur moyenne mesurée en 2020	Valeur maximale mesurée en 2020	Limite réglementaire	Valeur moyenne mesurée en 2020	Valeur maximale mesurée en 2020	Limite réglementaire	
	Activité bêta globale	12,3 Bq/L	14,0 Bq/L	18 Bq/L (hors ⁴⁰ K et tritium)	-	-	-	
Eau filtrée	Tritium	22,4 Bq/L	88,1 Bq/L	1800 Bq/L	12,0 Bq/L	84,6 Bq/L	900 ⁽¹⁾ / 100 ⁽²⁾ Bq/L	
	Potassium	421 mg/L	440 mg/L	-	-	-	-	
Matières en suspension	Activité bêta globale	0,04 Bq/L	0,0684 Bq/L	-	-	-	-	

⁽¹⁾ en présence de rejets radioactifs / (2) en l'absence de rejets radioactifs

<u>Commentaires</u>: Les mesures de surveillance dans les eaux de surface pour l'année 2020 sont cohérentes avec les valeurs attendues du fait des rejets d'effluents autorisés du CNPE. Les mesures d'activité bêta globale et de l'activité en tritium dans l'eau sont très inférieures aux limites réglementaires.

2. Rejets d'effluents liquides chimiques

Le fonctionnement d'un CNPE nécessite l'utilisation de substances chimiques et donne lieu à des rejets chimiques par voie liquide dans l'environnement.

Ces rejets d'effluents chimiques sont issus :

- des produits de conditionnement des circuits primaire, secondaire et auxiliaires utilisés pour garantir l'intégrité des matériels contre la corrosion (rejets chimiques associés aux effluents radioactifs ou non)
- de la production d'eau déminéralisée,
- du traitement des eaux vannes (eaux rejetées par les installations domestiques),
- des traitements des circuits du refroidissement à l'eau brute contre les dépôts de tartre et le développement des micro-organismes.

Les principales substances utilisées sont :

- l'acide borique (H₃BO₃) : le bore contenu dans cet acide est « avide » des neutrons produits lors de la réaction nucléaire. C'est une substance neutrophage, qui permet donc le contrôle de la réaction de fission et donc le pilotage du réacteur. Ce bore est dissous dans l'eau du circuit primaire.
- la lithine (LiOH) : ce produit est utilisé pour maintenir le pH du circuit primaire. En effet, le bore est sous forme acide. Pour éviter les effets de corrosion liés à cet acide, de la lithine est ajoutée à l'eau du circuit primaire afin d'ajuster le pH à celui de moindre corrosion. La concentration en lithine est donc directement liée à celle du bore.
- l'hydrazine (N₂H₄) : ce produit est utilisé principalement dans le circuit secondaire comme un agent anti-oxydant. Il permet d'éliminer l'oxygène dissous dans le mélange eau-vapeur, et ainsi maintenir là aussi un pH de moindre corrosion du circuit secondaire.
- La morpholine (C₄H₉NO), l'éthanolamine (C₂H₇NO) et l'ammoniaque (NH₄OH) sont des amines volatiles qui peuvent être employées, seules ou en combinaison, pour maintenir le bon pH dans le circuit secondaire. Elles complètent l'action de l'hydrazine. Le mode de conditionnement du circuit secondaire a évolué avec les années pour tenir compte du retour d'expérience interne et étranger. L'éthanolamine (C₂H₇NO), utilisée sur quelques CNPE, constitue une alternative intéressante à la morpholine, en particulier pour la protection des pièces internes des générateurs de vapeur et des purges des sécheurs-surchauffeurs de la turbine.
- le phosphate trisodique (Na₃PO₄) : comme l'hydrazine, le phosphate est utilisé pour le conditionnement des circuits de refroidissement intermédiaires.
- les détergents : ces produits sont régulièrement utilisés pour le nettoyage des locaux industriels ; qu'ils soient en ou hors zone contrôlée. Ils sont également utilisés à la laverie du CNPE pour le nettoyage des tenues d'intervention.

Par ailleurs, l'abrasion et la corrosion naturelles des tubes en laiton des condenseurs peut entraîner des rejets de cuivre et de zinc.

Les autres rejets chimiques réglementés ont pour origine l'installation de production d'eau déminéralisée, le traitement des eaux vannes et usées, dans la station d'épuration, ainsi que le traitement des eaux potentiellement huileuses issues de la salle des machines, des transformateurs principaux. Les rejets des eaux pluviales également réglementés au niveau des émissaires de rejet.

Pour lutter contre les salissures biologiques, l'eau de mer alimentant les circuits de refroidissement des sites marins est traitée, du printemps à l'automne, à l'eau de Javel à 0,5 g/L en chlore (hypochlorite de sodium) produite in situ par électrolyse de l'eau de mer. Le traitement biocide des circuits ouverts de refroidissement des sites marins conduit à des rejets de composés organohalogénés dont le principal est le bromoforme.

a. Etat des connaissances sur la toxicité de l'éthanolamine et de leurs produits dérivés

Il n'y a pas d'évolution récente des connaissances sur la toxicité de l'éthanolamine et dessousproduits associés. Les principaux effets connus sont rappelés ci-après.

- L'éthanolamine a des propriétés irritantes (oculaire, cutané, brûlure d'œsophage dans le cas de l'ingestion) et corrosives. Aucune VTR issue des bases de données de référence n'est associée à cette substance.
- Les produits de dégradation de l'éthanolamine sont constitués des ions acétates, formiates, glycolates et oxalates, ainsi que de méthylamine et d'éthylamine. Il s'agit de substances irritantes voire corrosives, qui sont faiblement toxiques dans les conditions de rejet. Aucune VTR issue des bases de données de référence n'est associée à ces substances.

L'étude d'impact n'a pas mis en évidence de risque sanitaire attribuable aux rejets liquides d'éthanolamine et de ses produits dérivés.

b. Règles spécifiques de comptabilisation

En application de l'article 3.2.7. -l. de la décision ASN n° 2013-DC-0360 modifiée, une nouvelle règle est appliquée à compter du 1er janvier 2015 pour la comptabilisation des quantités de substances chimiques rejetées. Cette nouvelle règle consiste à retenir par convention une valeur de concentration égale à la limite de quantification divisée par deux lorsque le résultat de la mesure est en dessous de la limite de quantification des moyens métrologiques employés pour effectuer l'analyse.

c. Rejets d'effluents liquides chimiques via les bassins de rejet n°1 et n°2

i. Cumul mensuel

Le cumul mensuel des rejets chimiques transitant par les bassins de rejets n°1 et n°2 est donné dans le tableau suivant :

	Acide borique (kg)	Ethanolamine (kg)	Hydrazine (kg)	Détergents (kg)	Azote total (kg)	Phosphates (kg)	Métaux totaux (kg)	MES (kg)	DCO (kg)
Janvier	309	0,58	0,167	1,30	40,5	28,0	2,6	20,3	300
Février	861	2,20	0,236	9,57	62,2	57,6	3,3	20,7	260
Mars	1200	0,34	0,034	3,60	30,2	12,9	1,5	13,6	71
Avril	840	0,68	0,040	2,80	15,7	7,9	0,8	12,7	57
Mai	0	0,58	0,029	0	11,2	16,0	0,7	10,8	32
Juin	580	0,61	0,019	0,12	6,6	20,5	1,6	6,9	24
Juillet	571	0,34	0,027	0,03	3,1	19,5	1,3	3,4	10
Août	480	0,20	0,050	0,03	30,8	48,7	2,7	7,9	24
Septembre	758	0,59	0,031	0,19	8,9	42,4	4,0	9,2	260
Octobre	537	0,46	0,048	0,06	25,6	38,2	1,9	18,5	430
Novembre	903	0,67	0,079	0,10	41,6	30,2	3,5	26,5	370
Décembre	1204	1,78	0,122	0,08	108,3	28,4	6,6	39,6	410
TOTAL ANNUEL	7160	9,0	0,88	17,9	385	350	30,5	190	2248

	Détail métaux totaux									
	Al (kg)	Cr (kg)	Cu (kg)	Fe (kg)	Mn (kg)	Ni (kg)	Pb (kg)	Zn (kg)		
Janvier	2,3E-01	4,9E-02	3,3E-01	1,6E+00	1,7E-01	4,9E-02	2,0E-02	1,8E-01		
Février	2,3E-01	5,1E-02	1,8E-01	2,2E+00	1,9E-01	5,1E-02	2,0E-02	3,4E-01		
Mars	1,4E-01	3,4E-02	1,9E-01	9,8E-01	7,7E-02	3,7E-02	1,4E-02	1,3E-01		
Avril	1,4E-01	3,2E-02	4,4E-02	3,2E-01	4,5E-02	3,2E-02	1,3E-02	1,6E-01		
Mai	1,1E-01	2,7E-02	2,7E-02	3,3E-01	7,0E-02	2,7E-02	1,1E-02	6,0E-02		
Juin	8,3E-02	1,7E-02	4,7E-02	1,2E+00	8,2E-02	2,1E-02	9,8E-03	1,1E-01		
Juillet	8,5E-02	8,5E-03	4,2E-02	9,8E-01	5,8E-02	1,4E-02	3,4E-03	1,1E-01		
Août	1,8E-01	2,0E-02	1,1E-01	1,8E+00	2,5E-01	2,0E-02	1,0E-02	2,5E-01		
Septembre	2,9E-01	2,9E-02	1,1E-01	3,0E+00	1,8E-01	2,9E-02	1,2E-02	4,1E-01		
Octobre	2,2E-01	4,6E-02	1,6E-01	9,2E-01	1,6E-01	4,6E-02	1,9E-02	2,8E-01		
Novembre	3,6E-01	6,6E-02	3,8E-01	2,0E+00	3,2E-01	6,6E-02	2,7E-02	2,8E-01		
Décembre	1,5E+00	9,9E-02	2,6E-01	3,6E+00	3,6E-01	9,9E-02	4,0E-02	4,8E-01		
TOTAL ANNUEL	3,55E+00	4,80E-01	4,30E-01	1,90E+01	1,96E+00	4,92E-01	1,97E-01	2,81E+00		

	Contribution Fla3										
	Acide borique (kg)	Ethanolamine (kg)	Hydrazine (kg)	Détergents (kg)	Azote total (kg)	Phosphates (kg)	Métaux totaux (kg)	MES (kg)	DCO (kg)		
Janvier	91	0,01	0,059	/	28,4	1,7	1,0	/	100,0		
Février	1135	1,64	0,128	/	14,4	5,0	1,3	/	86,7		
Mars	121	0,40	0,004	/	0,3	1,1	0,7	/	23,7		
Avril	32	0,04	1	/	0,2	0,1	/	/	19,0		
Mai	10	0,05	1	/	/	0,1	/	/	10,7		
Juin	404	0,34	0,002	/	0,3	5,00	0,6	/	8,0		
Juillet	160	0,10	0,002	/	0,4	3,7	0,4	/	3,3		
Août	24	0,15	0,020	/	0,5	88,8	0,8	/	8,0		
Septembre	27	0,09	0,007	1	0,3	10,6	0,3	/	86,7		
Octobre	37	0,34	0,007	/	1,1	4,5	0,2	/	143,3		
Novembre	18	0,20	0,004	/	0,2	6,8	0,5	/	123,3		
Décembre	16	0,13	0,003	/	0,2	41,7	0,5	/	126,7		
TOTAL ANNUEL	2074	3,48	0,236	1	46,1	169,1	6,3	1	749,3		

ii. Comparaison pluriannuelle et au prévisionnel

Le tableau ci-dessous permet un comparatif des valeurs de rejets d'effluents non radioactfis liquides de l'année 2020 avec les valeurs des années précédentes et celles du prévisionnel 2020.

Substances	Unité	2018	2019	2020	Prévisionnel 2020
Acide borique	kg	4 450	7 630	7 160	8 000
Ethanolamine	kg	13,7	25,5	9,0	28
Hydrazine	kg	1,84	3,01	0,88	3,5
Détergents	kg	57,2	47	17,9	50
Azote total	kg	2 180	1 630	385	2 700
Phosphates	kg	414	476	350	830
Métaux totaux	kg	31	46,1	30,5	45
MES	kg	248	325	190	
DCO	kg	3 100	4 550	2 248	

<u>Commentaires</u>: Les rejets chimiques liquides sont bien inférieurs aux valeurs du prévisionnel 2020.

iii. Comparaison aux limites

Le tableau ci-dessous permet un comparatif des valeurs de rejets de l'année 2020 avec les valeurs limites de rejets fixées par la décision ASN n° 2018-DC-0639

	Limite	Rejet	Limite	Rejet	Limite	Rejet	Limite	Rejet
Substances	Concentration maximale ajoutée (mg/L)	Valeur maximale calculée (mg/L)	Flux 24h (kg)	Valeur maximale calculée (kg)	Flux 2h (kg)	Valeur maximale calculée (kg)	Flux annuel ajouté (kg)	Flux annuel calcul é (kg)
Acide borique	1,3	1,10 ^E -1	2 500	780	870	89	15 600	7 630
Ethanolamin e	0,005	9.70 ^E -4	10	3,6			1 150	25,5
Hydrazine	0,002	2,70 ^E -5	3	0,078			54	3,01
Détergents	0,14	7,5 ^E -4	270	2,8	110		3 600	47
Azote total	0,09	5,70 ^E -3	80	21	60	15	14 700	1 630
Phosphates	0,1	7,8 ^E -3	200	29	160	15	2 000	476
Métaux totaux	0,001	2,40 ^E -4	18	0,5			96	43
MES	0,08	1,34 ^{E-3}	160	5,2(1)				
DCO	0,09	2,5 ^E -2	170	57				

^{(1) :} concentration maximale calculée à partir des analyses trimestrielles

L'article 5.3.1 de la décision ASN n°2017-DC-0588 demande une évaluation de la quantité annuelle de lithine rejetée. En 2020, la quantité de lithine rejetée par le CNPE de Flamanville est évaluée à environ 1 kg. Cette estimation est basée sur une moyenne des rejets de 1995 à 2010 (peu de variations inter-annuelles), année de parution de la décision ASN n°2010-DC-0189 dans laquelle le suivi des rejets en lithine a été abandonné.

<u>Commentaires</u>: Les rejets liquides chimiques respectent les valeurs limites annuelles de rejet de la décision ASN n° 2018-DC-0639.

d. Rejets d'effluents liquides chimiques des bassins de rejets n°1, n°2 et n°3

Ce paragraphe présente les rejets de substances chimiques liées au traitement biocide du CNPE de Flamanville pour l'année 2020.

i. Cumul mensuel

Le tableau ci-dessous présente les rejets mensuels pour chaque type de substances chimiques par voie liquide.

	Oxydants résiduels	Bromoformes
	(tonnes)	(tonnes)
Janvier	8,7	0,58
Février	0	0
Mars	0	0
Avril	6,3	0,52
Mai	12,0	1,3
Juin	2,0	0,3
Juillet	1,0	0,1
Août	1,0	0
Septembre	1,0	0,2
Octobre	1,0	0,53
Novembre	2,0	0,37
Décembre	12,0	1,9
TOTAL ANNUEL	47,0	5,8

ii. Comparaison pluriannuelle et au prévisionnel

Les limites réglementaires relatives aux rejets des substances chimiques liées au traitement biocide sont réglementées par la décision ASN n° 2018-DC-0639.

Le tableau ci-dessous permet un comparatif des valeurs de rejets d'effluents liquides chimiques de l'année 2020 avec les valeurs des années précédentes et celles du prévisionnel 2020.

Paramètres	Unité	2018	2019	2020	Prévisionnel 2020
Oxydants résiduels	tonnes	39	89	47	57
Bromoformes	tonnes	9	12	5,8	9

<u>Commentaires</u>: Les rejets chimiques liés au traitement biocide sont bien inférieurs aux valeurs du prévisionnel 2020.

iii. Comparaison aux limites et au prévisionnel

Le tableau ci-dessous présente les rejets annuels relatifs au traitement biocide au chlore actif pour chaque type de substance chimique.

	Limite	Rejet	Limite	Rejet
Paramètres	Concentration maximale ajoutée (mg/L)	Valeur maximale calculée (mg/L)	Flux 24h (kg)	Valeur maximal calculée (kg)
Oxydants résiduels ⁽¹⁾	0,52	0,17	3 380	1 500
Bromoformes (2)	0,02	0,0092	116	92

⁽¹⁾ En cas de traitement par « chloration choc » sur les réacteurs 1, 2 ou 3, le flux sur 24h d'oxydants résiduels et la concentration moyenne journalière ajoutée dans le bassin sont portés respectivement à 4800 kg et 1mg/L

Commentaires : Il n'y a pas eu de dépassement de limite réglementaire pendant l'année 2020.

⁽²⁾ En cas de traitement par « chloration choc » sur les réacteurs 1, 2 ou 3, le flux sur 24h de bromoformes et la concentration moyenne journalière ajoutée dans le bassin sont portés respectivement à 170 kg et 0,04mg/L

e. Rejets d'effluents liquides chimiques via « l'émissaire 2 » (effluents issus de la station de déminéralisation (SDA), de l'unité de dessalement (SDS) et de la station d'épuration (STEP))

i. Cumul mensuel

Le tableau ci-dessous présente les rejets mensuels pour chaque type de substances chimiques par voie liquide.

	Fer SDA (Kg)	Sulfates SDA (Kg)	Fer SDS (Kg)	Sulfates SDS (Kg)	Détergents SDS (Kg)	Azote global STEP (Kg)	Phosphore total STEP (Kg)
Janvier	597	5 482	4	20	0	300	49
Février	412	4 851	0	110	0	30	8
Mars	330	3 749	0	10	0	40	12
Avril	399	3 487	0	23	0	60	9
Mai	363	8 185	1	0	0	80	14
Juin	235	5 435	23	135	0	160	18
Juillet	271	6 292	10	123	0	160	30
Août	432	6 593	1	0	0	120	10
Septembre	463	9 938	0	0	0	50	20
Octobre	739	14 596	1	0	0	100	10
Novembre	745	18 189	0	0	0	100	20
Décembre	678	14 944	0	0	0	200	50
TOTAL ANNUEL	5 664	101 741	40	421	0	1 400	250

ii. Comparaison pluriannuelle et au prévisionnel

Le tableau ci-dessous permet un comparatif des valeurs de rejets d'effluents liquides chimiques de l'année 2020 avec les valeurs des années précédentes et celles du prévisionnel 2020.

Paramètres	Unité	2018	2019	2020	Prévisionnel 2020
Fer SDA	kg	4 416	7 266	5 664	5 900
Sulfates SDA	kg	87 935	105 061	101 741	69 600
Fer SDS	kg	282	378	40	400
Sulfates SDS	kg	1 417	1 153	421	1 500
Détergents SDS	kg	0	0	0	0
Azote global STEP	kg		2 000	1 400	2 000
Phosphore total STEP	kg		560	250	560

<u>Commentaires</u>: La station de dessalement d'eau de mer a été à l'arrêt durant la quasi-totalité de l'année. La fourniture d'eau d'appoint a donc été assurée par la station de déminéralisation d'eau douce, ce qui explique le dépassement de la valeur prévisionnelle de rejet en sulfates SDA.

iii. Comparaison aux limites

Le tableau ci-dessous permet un comparatif des valeurs de rejets de l'année 2020 avec les valeurs limites de rejets fixées par la décision ASN n° 2018-DC-0639.

Paramètres	Limites de rejet Flux 24h (kg)	Rejet effectif Valeur maximale calculée (kg)	Limites de rejet Flux annuel ajouté (kg)	Rejet effectif Flux annuel calculé (kg)
Fer SDA+SDS	100	58		5 900
Sulfates SDA+SDS	2 100	1 900		124 000
Fer SDS				175
Sulfates SDS				2 700
Détergents SDS	125	0		0
Azote global STEP	40	16		
Phosphore total STEP	7	5,7		

Commentaires: RAS

3. Principales opérations de maintenance intervenues sur les équipements et ouvrages de rejets liquides

Commentaires:

L'année 2020 n'a pas été concernée par des actions de maintenance (hors maintenance programmée) et aucune intervention ou opération de maintenance anticipée n'ont été nécessaires.

4. Opérations exceptionnelles de rejets d'effluents liquides

Commentaires:

Le CNPE de Flamanville n'a pas réalisé d'opération exceptionnelle de rejet d'effluents liquides chimiques en 2020.

III. Rejets thermiques

Dans un CNPE, le fluide « eau-vapeur » du circuit secondaire suit un cycle thermodynamique au cours duquel il échange de l'énergie thermique avec deux sources de chaleur, l'une chaude, l'autre froide.

Le circuit assurant le refroidissement du condenseur (circuit tertiaire) constitue la source froide dont la température varie entre 0 °C et 30 °C environ. La source froide, nécessaire au fonctionnement, peut être apportée :

- soit directement par l'eau prélevée en rivière ou en mer dans un circuit dit ouvert,
- soit indirectement par l'air ambiant au moyen d'un aéroréfrigérant dans un circuit dit fermé.

Lorsque le CNPE est situé sur un cours d'eau à grand débit, en bord de mer ou sur un estuaire, l'eau prélevée à l'aide de pompes de circulation passe dans les nombreux tubes du condenseur où elle s'échauffe avant d'être restituée intégralement au milieu aquatique.

L'échauffement de l'eau (écart de température entre la sortie et l'entrée : $\Delta T^{\circ}C$) est lié à la puissance thermique (Pth) à évacuer au condenseur et du débit d'eau brute au condenseur (Q).

Afin de réduire le volume d'eau prélevée et limiter l'échauffement du milieu aquatique, le refroidissement des CNPE implantés sur des cours d'eau à faible ou moyen débit est assuré en circuit fermé au moyen d'aéroréfrigérants. Dans un aéroréfrigérant, une grande part de la chaleur extraite du condenseur est transférée directement à l'atmosphère sous forme de chaleur latente de vaporisation (75 %) et sous forme de chaleur sensible (25 %). Le reste de la chaleur est rejeté au cours d'eau par la purge. La purge de l'aéroréfrigérant constitue donc le rejet thermique de l'installation.

Les contrôles destinés à s'assurer du respect des limites réglementaires s'appuient sur des mesures de températures réalisées dans le rejet et dans l'environnement ou sur des calculs effectués à partir de paramètres physiques tels que le rendement thermodynamique, l'énergie électrique produite, les débits de rejet et du cours d'eau.

1. En conditions climatiques normales

Les rejets thermiques issus du circuit de refroidissement du CNPE de Flamanville et des différents circuits secondaires nécessaires à son fonctionnement doivent respecter les limites fixées dans la décision ASN n° 2018-DC-0639.

Le CNPE de Flamanville réalise en continu des mesures de températures en amont, au rejet et en aval du CNPE et un suivi des rejets thermiques conformément aux autorisations de rejet en vigueur (échauffement, température au rejet, température à 50m du rejet). Le bilan des valeurs mensuelles maximales de ces différents paramètres pour l'année 2020 sont présentés dans les tableaux suivants :

	Température	Echauffement	Température	Température
	mesurée à la	au rejets (°C)	au rejet (°C)	mer (°C)
	prise d'eau (°C)			
Janvier	10,7	0	10,7	10,7
Février	10,3	0	10,3	10,3
Mars	10,1	0	10,1	10,1
Avril	11,9	0	11,9	11,9
Mai	14,1	0	14,1	14,1
Juin	16,1	0	16,1	16,1
Juillet	17,5	0	17,5	17,5
Août	19,0	0	19,0	19,0
Septembre	18,5	0	18,5	18,5
Octobre	16,5	0	16,5	16,5
Novembre	14,6	0	14,6	14,6
Décembre	12,6	12,8	23,6	18,8

2. Comparaison aux limites

Les rejets thermiques doivent respecter les limites fixées à l'article [EDF-FLA-227] de la décision ASN n° 2018-DC-0639.

Paramètres	Unité	Limite en vigueur	Valeurs maximales
Echauffement amont- aval calculé	G G		12,8
		14°C (pour l'INB n°167)	0
Température aval après mélange	°C	< 30°C (de novembre à mai)	23,6
		< 35°C (de juin à octobre)	19,0

<u>Commentaires</u>: La tranche 2 a été remise en production au mois de décembre et les limites réglementaires associées aux rejets thermiques ont toujours été respectées.

3. En conditions climatiques exceptionnelles

Aucun épisode caniculaire nécessitant l'utilisation des limites en conditions climatiques exceptionnelles n'a eu lieu en 2020.

4. Principales opérations de maintenance intervenues sur les équipements et ouvrages de rejets thermiques

L'année 2020 n'a pas été concernée par des actions de maintenance (hors maintenance programmée) et aucune intervention ou opération de maintenance anticipée n'ont été nécessaires.

Partie V - Surveillance de l'environnement

I. Surveillance de la radioactivité dans l'environnement

EDF met en place depuis la mise en service de chaque CNPE un programme de surveillance de la radioactivité dans l'environnement du CNPE. Cette surveillance consiste à prélever des échantillons, à des fins d'analyse, dans les écosystèmes proches du CNPE, sous et hors des vents dominants, en amont et en aval des rejets liquides et dans les eaux souterraines. Ces mesures, associées à un contrôle strict des rejets d'effluents radiologiques, permettent de s'assurer de l'absence d'impact sur l'homme et l'environnement comme démontré dans l'étude d'impact.

La surveillance radiologique de l'environnement remplit trois fonctions principales.

Une fonction d'alerte assurée au moyen de mesures en continu. Elle permet la détection précoce de toute évolution atypique d'un ou plusieurs paramètres environnementaux en lien avec l'exploitation des installations afin de déclencher les investigations et, si nécessaire, des actions de prévention (arrêt du rejet...);

Une fonction de contrôle du bon fonctionnement global des installations au travers des paramètres que la réglementation demande de suivre à différentes fréquences. Les résultats des analyses sont comparés, soit aux limites autorisées, soit à des valeurs repères (seuil de détection des appareils de mesure, bruit de fond naturel...);

Une fonction de suivi et d'étude visant à s'assurer de l'absence d'impact à long terme des prélèvements et des rejets sur les écosystèmes terrestre et aquatique. C'est l'objet des campagnes de mesures saisonnières de radioécologie.

Les prélèvements et analyses sont réalisés à des fréquences variables en cohérence avec les objectifs assignés à la mesure (alerte, contrôle,...). Des contrôles quotidiens, hebdomadaires et mensuels sont ainsi réalisés dans l'écosystème terrestre, l'air ambiant, les eaux de surface recevant les rejets liquides et les eaux souterraines. Les prélèvements et les analyses sont réalisés par le CNPE selon les modalités fixées par les autorisations délivrées par l'administration. La stricte application du programme de surveillance fait l'objet d'inspections programmés ou inopinés de la part de l'ASN, qui réalise des expertises indépendantes.

Le CNPE dispose pour la réalisation de ce programme de surveillance d'un laboratoire dédié aux mesures environnementales dit laboratoire « Environnement », ainsi que du personnel compétent et qualifié en analyses chimiques et radiochimiques. Ces laboratoires sont équipés d'appareillages spécifiques permettant l'analyse des échantillons prélevés dans le milieu naturel. Ils sont soumis à des exigences relatives aux équipements, aux techniques de prélèvement et de mesure, de maintenance et d'étalonnage. Certaines analyses peuvent être sous-traitées à des laboratoires agréés.

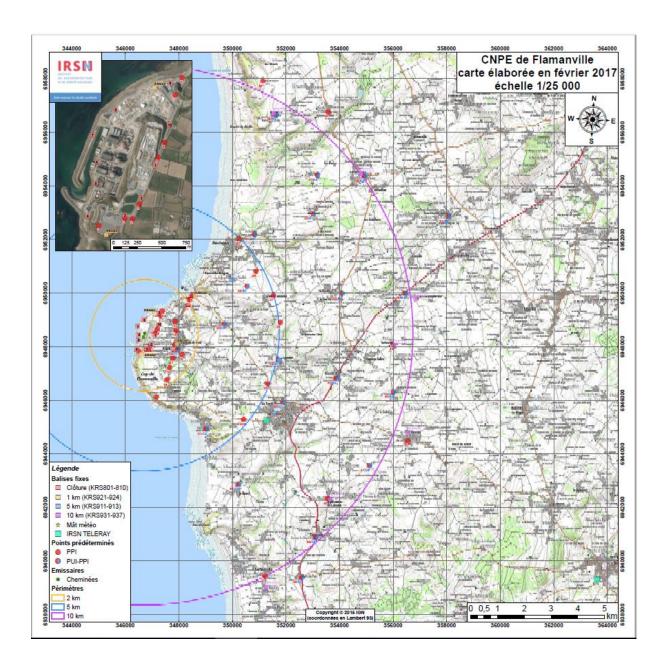
Ainsi, le CNPE réalise annuellement, sous le contrôle de l'ASN, plusieurs milliers d'analyses dont les résultats sont transmis à l'administration et publiés par EDF sur le http://www.edf.fr/flamanville du CNPE. Les résultats des mesures de radioactivité réalisées dans le cadre de la surveillance réglementaire de l'environnement sont également accessibles en ligne gratuitement sur le site internet du Réseau National de Mesures de la radioactivité de l'environnement (RNM - http://www.mesure-radioactivite.fr).

Ces mesures réalisées en routine sont complétés depuis 1992 par un suivi radioécologique annuel des écosystèmes terrestre et aquatique auquel est venu s'ajouter des mesures réglementaires réalisées à maille trimestrielle et annuelle et nécessitant le recours à des techniques analytiques d'expertise non compatibles avec les activités d'un laboratoire environnement d'un industriel. Tous les 10 ans, un bilan radioécologique décennal plus poussé est également réalisé. L'ensemble de ces prélèvements et analyses permettent de suivre à travers une grande variété d'analyses des paramètres environnementaux pertinents (i.e. : bio indicateurs) afin d'évaluer finement et dans la durée l'impact du fonctionnement du CNPE sur l'environnement et répondre ainsi à la fonction de suivi et d'étude. Ces études nécessitent des connaissances scientifiques approfondies de la biologie et des comportements des écosystèmes vis-à-vis des substances radioactives. Elles font aussi appel à des techniques de prélèvement d'échantillons et d'analyse complexes différentes de celles utilisées pour la surveillance de routine. Ces études sont donc confiées à des laboratoires externes qualifiés, agréés et reconnus pour leurs compétences spécifiques.

Ces études radioécologiques assurent un suivi long terme essentiel à la compréhension des mécanismes de transfert des radionucléides dans l'environnement et pour déterminer l'influence potentielle des rejets de l'installation au regard des autres sources de radioactivité naturelle et/ou artificielle.

La nature des échantillons et les lieux de prélèvement sont sélectionnés afin de mettre en évidence une éventuelle contribution des rejets d'effluents liquides et/ou atmosphériques des installations à l'ajout de radioactivité dans l'environnement.

En règle générale, le plan d'échantillonnage contient des échantillons biologiques, qui constituent des voies de transfert possibles, directes ou indirectes, de la radioactivité vers l'homme (prélèvements de légumes, fruits, poissons, lait, eaux, herbes...) et des échantillons, appelés bioindicateurs, qui sont connus pour leur aptitude à fixer spécifiquement certains polluants (lichens, mousses, bryophytes...). Le plan d'échantillonnage prévoit également des prélèvements dans des matrices dites « d'accumulation » (sols, sédiments), dans lesquels certains composants radiologiques peuvent rester piégés.


Les stations de prélèvements sont choisies en fonction de la rose des vents locale, des conditions hydrologiques, de la répartition de la population et de la disponibilité des échantillons dans l'environnement du CNPE. Les prélèvements collectés dans l'environnement terrestre sont répartis en distinguant les zones potentiellement influencées des zones non influencées par les rejets atmosphériques du CNPE. Dans l'environnement aquatique, les prélèvements sont effectués en amont et en aval des points de rejets des effluents liquides en tenant compte de la présence éventuelle d'une autre installation nucléaire en amont.

Ces études radioécologiques ont permis de caractériser finement les niveaux de radioactivité d'origine naturelle et artificielle dans les différents compartiments de l'environnement autour du CNPE, et de préciser l'influence des rejets d'effluents liquides et à l'atmosphère. Les données collectées depuis plusieurs décennies ont montré que la radioactivité naturelle constitue la principale composante de la radioactivité dans l'environnement, et que la radioactivité artificielle provient majoritairement d'une rémanence des retombées des essais nucléaires atmosphériques et de l'accident de Tchernobyl. Du fait de l'éloignement de ces événements anciens et des efforts réalisés par EDF pour diminuer les

rejets de ses installations nucléaires, le niveau de radioactivité dans l'environnement à proximité du CNPE a considérablement diminué depuis une vingtaine d'année.

1. Surveillance de la radioactivité ambiante

Le système de surveillance de la radioactivité ambiante s'articule autour de 4 réseaux de balises radiamétriques (clôture, à 1 km, à 5 km et à 10 km) via la mesure en continu du débit de dose gamma ambiant. Les balises de chaque réseau sont implantées à intervalle régulier de façon à réaliser des mesures dans toutes les directions. Elles permettent l'enregistrement et la retransmission en continu du débit de dose gamma ambiant et de donner l'alerte en cas de dépassement du bruit de fond ambiant augmenté de 114 nSv/h. Les balises sont également équipées d'un système d'alarme signalant toute interruption de leur fonctionnement.

Les informations (débits de dose et états de fonctionnement) issues des balises sont envoyées en continu vers un centralisateur qui permet la visualisation et l'enregistrement des données. Les débits de dose moyens enregistrés par les différents réseaux de mesure pour l'année 2020 sont présentés dans le tableau suivant. Les débits de dose maximaux et les données relatives à l'année antérieure sont également présentés à titre de comparaison.

Réseau de mesure	Débit de dose moyen année 2020 (nSv/h)	Débit de dose max année 2020 (nSv/h)	Débit de dose moyen année 2019 (nSv/h)	Débit de dose max année 2019 (nSv/h)
Clôture	128,4	240	129,6	243,6
1 km	92,4	144	96	136,8
5 km	171,6	394,8	169,2	375,6
10 km	112,8	188,4	112,8	194,4

<u>Commentaires</u>: Pour les quatre réseaux, les débits de dose moyens enregistrés pour l'année 2020 sont de l'ordre de grandeur du bruit de fond et cohérents avec les résultats des années antérieures.

2. Surveillance du compartiment atmosphérique

Trois stations d'aspiration en continu des poussières atmosphériques (aérosols) sont implantées dans un rayon de 1 km autour du CNPE. Des analyses journalières de l'activité bêta globale à J+6 sont réalisées quotidiennement sur les filtres, ainsi qu'une analyse isotopique mensuelle par spectrométrie gamma sur regroupement des filtres quotidiens par station.

Un dispositif de prélèvement du tritium atmosphérique par barbotage est également implanté sous les vents dominants à la station dite AS1. L'analyse du tritium atmosphérique piégé est réalisée pour chacune des périodes définies réglementairement (du 1er au 7, du 8 au 14, du 15 au 21 et du 22 à la fin du mois).

Un dispositif de prélèvement des eaux de pluie par un collecteur de précipitations est implanté sous les vents dominants à la station AS1. Des analyses bimensuelles des activités bêta globale et tritium sont réalisées.

Les résultats des mesures réalisées sur le compartiment atmosphérique pour l'année 2020 sont donnés dans le tableau suivant.

Compartiment	Paramètres		Moyenne annuelle	Valeur maximale mesurée	Limite réglementaire (pour chaque analyse)
Poussières	Bêta globa	le	3,40 ^{E-4} Bq/m ³	1,53 ^{E-3} Bq/m ³	1 ^{E-2} Bq/m ³
atmosphériques	Spectrométrie gamma	⁵⁸ Co	≤ 1,0 ^{E-5} Bq/m ³	≤ 1,0 ^{E-5} Bq/m ³	-

		⁶⁰ Co	≤ 1,0 ^{E-5} Bq/m³	≤ 1,0 ^{E-5} Bq/m³	-
		¹³⁴ Cs	≤ 1,0 ^{E-5} Bq/m³	≤ 1,0 ^{E-5} Bq/m ³	-
		¹³⁷ Cs	≤ 1,0 ^{E-5} Bq/m ³	≤ 1,0 ^{E-5} Bq/m ³	-
		131	≤ 1,12 ^{E-3} Bq/m ³	≤ 2,40 ^{E-3} Bq/m ³	-
		⁴⁰ K	≤ 1,5 ^{E-4} Bq/m³	≤ 1,8 ^{E-4} Bq/m ³	-
Tritium a	tmosphérique		≤ 0,15 Bq/m³	0,21 Bq/m³	50 Bq/m ³
	Bêta globa	le	0,13 Bq/L	0,34 Bq/L	-
Eau de pluie	Tritium		≤ 4,61 Bq/L	≤ 4,96 Bq/L	-

<u>Commentaires</u>: Les mesures de surveillance du compartiment atmosphérique pour l'année 2020 sont cohérentes en moyenne avec les valeurs du bruit de fond. Les mesures de l'activité bêta globale et de l'activité en tritium atmosphérique sont très inférieures aux limites réglementaires.

3. Surveillance du milieu terrestre

Les résultats des mesures réalisées sur le compartiment terrestre pour l'année 2020 sont donnés dans le tableau suivant. Concernant les résultats des analyses par spectrométrie gamma, seules les activités relatives aux radionucléides d'origine artificielle et supérieures aux seuils de décision sont présentées.

Nature du prélèvement	Radion	ucléide	Périodicité	Moyenne annuelle	Valeur maximale mesurée
Végétaux terrestres (Bq/kg sec)	Spectrométrie gamma	-	Mensuelle	-	-
Lait (Bq/L)	Spectrométrie gamma	-	Mensuelle	-	-

Commentaires:

Les résultats des mesures annuelles réalisées sur le compartiment terrestre ainsi que leur interprétation pour l'année 2019 sont présentés dans le rapport du suivi radioécologique annuel, présenté en **annexe I**.

4. Surveillance des eaux de surface

Les résultats des mesures réalisées sur les eaux de surface pour l'année 2020 sont donnés dans le tableau suivant.

	Paramètre analysé	Périodicité	Unités	Moyenne annuelle	Valeur maximale mesurée
	Activité bêta globale		Bq/L	12,11	13,90
Eau filtrée	Tritium	Bimensuelle	Bq/L	10,72	29,70
	Potassium		Bq/L	11,73	12,04
Matières en suspension	Activité bêta globale		Bq/L	0,04	0,07

<u>Commentaires</u>: Pas de valeur anormale.

5. Surveillance du milieu aquatique

Les résultats des mesures annuelles réalisées sur le compartiment aquatique ainsi que leur interprétation pour l'année 2019 sont présentés dans le rapport du suivi radioécologique annuel, présenté en **annexe I**.

6. Surveillance des eaux souterraines

Les eaux souterraines situées au droit du CNPE font l'objet d'une surveillance radiologique dont les résultats sont présentés dans le tableau suivant.

Paramètres		Unité	Valeur mesurée
	Tritium	Bq/L	21,8
Eaux filtrées	Bêta global	Bq/L	13,9
	Potassium	Bq/L	12,3
Matières en suspension	Bêta global	Bq/L	8,03

Commentaires : Pas de valeur anormale.

II. Physico-chimie des eaux souterraines

Une surveillance physico-chimique des eaux souterraines est effectuée sur les paramètres physicochimiques par le biais de prélèvements sur 11 piézomètres du CNPE.

Paramètres	Unité	Valeur maximale mesurée
рН	_	8,20
Pil		(0SEZ040PZ : pH11,9)
Conductivité	μS / cm	53 900
Hydrocarbures totaux		0,7
Chlorures		23 500
Azote Kjeldahl	mg / I	2,40
Nitrates		37,6
Phosphates		0,2

<u>Commentaires</u>: La valeur pH maximale de pH 11,9 est liée au piézomètre 0SEZ040PZ qui présente depuis le début de son suivi un pH de ce même ordre de grandeur.présente depuis le début de son suivi un pH de ce même ordre de grandeur.

III. Physico-chimie des eaux de surface

L'année 2020 a été fortement marquée par la crise sanitaire COVID-19. Les restrictions associées aux mesures de protection sanitaires liées à cette crise ont perturbé la mise en œuvre de la surveillance écologique et halieutique du milieu marin aux abords des CNPE situés en bord de mer et estuaire. Au total, plus de 99% des prélèvements prévus sur les 5 CNPE en 2020 (soit plus de 5000) ont néanmoins été effectués.

En ce qui concerne le CNPE de Flamanville, le programme de surveillance a pu être mis en œuvre dans son intégralité malgré les difficultés rencontrées. Seul le report de la campagne pélagique de printemps en fin d'année (lié à l'impossibilité d'embarquement du personnel lfremer en charge de ces campagnes entre mars et juin 2020) est venu modifier le programme habituel (voir tableau récapitulatif ci-dessous).

Au vu de la robustesse de la chronique de données de surveillance pélagique du milieu aux abords du CNPE dont dispose EDF, le report ponctuel de cette campagne est estimé sans impact significatif sur la qualité globale de la surveillance du CNPE de Flamanville.

	FLAMANVILLE - Décision n° 2018-DC-0640 de l'ASN du 19 juillet 2018						
Domaine	Compartiment	Programme - Campagnes	Prévision des Campagnes	Etat			
	Physico-chimie / Chimie	2 compagnes / an	1 : Prévue au printemps	Report : réalisée le 10/11/2020			
Pélagique	Phytoplancton	3 campagnes / an [Printemps / Été / Automne]	2 : Prévue en été	Réalisée le 25/06/2020			
	Zooplanton	[Fillitellips / Lte / Autolilile]	3 : Prévue en automne	Réalisée le 10/09/2020			
			1 : Prévue en mars	Réalisée les 11-12/03/2020			
Benthique	Phytobenthos intertidal 3 campagnes / an	3 campagnes / an	2 : Prévue en juin	Réalisée les 5-6/06/2020			
			3 : Prévue en septembre	Réalisée les 18-19/09/2020			
	Macrofaune Crustacés	3/	1 : Prévue en juin	Réalisée les 24-28/06/2020			
	Macrotaune Crustaces 2 campagnes	2 campagnes / an	2 : Prévue en septembre	Réalisée les 8-11/09/2020			
			1 : Prévue en juin	Réalisée le 25/06/2020			
Halieutique			2 : Prévue en juillet	Réalisée le 15/07/2020			
nalleutique	Larves de homards et	6 campagnes / an	3: Prévue en juillet	Réalisée le 29/07/2020			
	d'araignées	[entre février et septembre]	4 : Prévue en août	Réalisée le 11/08/2020			
			5 : Prévue en août	Réalisée le 27/08/2020			
		6 : Prévue en septembre	Réalisée le 08/09/2020				

	LEGENDE	
		Réalisé tel que prévu ou reporté et réalisé selon des modalités conformes aux prescriptions réglementaires
Ī		Report (selon des modalités différant des prescriptions réglementaires)

1. Physico-chimie des eaux de surface

Le CNPE fait réaliser par le laboratoire LABEO Manche, dans le canal d'amenée, le canal de rejet et le point de référence hors influence des rejets du CNPE, des mesures quadrimestrielles de certains paramètres physico-chimiques naturellement présents en milieu marin. Les résultats présentés dans le rapport annuel de l'IFREMER aboutissent aux conclusions suivantes :

Les données relatives au compartiment hydrologique acquises en 2020 dans le cadre du programme de surveillance écologique du CNPE de Flamanville mettent en évidence aucun échauffement aux abords du *Rejet*. Le CNPE n'ayant été en fonctionnement que sur les derniers jours de l'année 2020. Aucune perturbation thermique n'a été relevée lors des différentes campagnes. Les autres paramètres suivis présentent des valeurs et des variations expliquées par la saisonnalité, l'environnement climatique et géomorphologique.

Les rejets du CNPE n'affectent pas de façon générale la distribution et les variations saisonnières des paramètres étudiés. Les caractéristiques hydrologiques intrinsèques du milieu n'apparaissent donc pas modifiées par les activités, réduites en 2020, du CNPE.

2. Chimie des eaux de surface

Certaines substances chimiques issues du fonctionnement du CNPE sont recherchées (Ethanolamine, morpholine, hydrazine, agents de surface, haloformes) au niveau de la station de contrôle, le canal d'amenée et le canal de rejet.

En 2020, les sels nutritifs montrent des concentrations d'ammonium l'été, proches de la LQ (0,1µmol/L) pour tous les points (consommation du stock). En automne, les concentrations observées restent proches de la médiane, sauf pour le point *Référence* où la concentration se situe dans la gamme basse des données historiques. Le stock de nutriment commence à se constituer, via les apports terrigènes, d'où ce gradient côte-large. Les tendances des valeurs de nitrate et nitrite sont conformes au cycle saisonnier classique et sont liées principalement au cycle biologique du phytoplancton qui se développe au printemps consommant l'azote, qui s'épuise courant l'été et se recharge à l'automne avec l'apport de cours d'eau. D'un point de vue saisonnier, les concentrations de **phosphate** en automne, se situent dans la gamme faible des données historiques, avec une valeur de 0,152 µmol/L au point Rejet. Sur le long terme, une évolution vers la diminution des concentrations en phosphates est observée en Manche et en Atlantique. Cette diminution du phosphore s'explique plus par l'amélioration des performances des stations d'épuration, l'augmentation du nombre d'assainissements collectifs et par une moindre utilisation des engrais phosphatés en agriculture. Pour les silicates, le cycle saisonnier attendu (Figure B-1) des sels nutritifs est respecté : en été, les stocks se situent dans la gamme basse des données historiques (consommation par le phytoplancton). Pour l'automne, les valeurs sont conformes à ce qui est observé sur les côtes de la Manche Orientale, avec un processus de régénération dû aux apports des bassins versants, même si celles-ci apparaissent inférieures à la médiane.

Cette année, des concentrations élevées en **MES** ont été observées, à la fois en été et en automne, avec une valeur exceptionnelle au point *Référence* en été (27,1 mg/L). Mais seules les mesures de **turbidité** mesurées à l'automne par néphélométrie, mises en place depuis 2016, corroborent les niveaux de MES. En effet, en été, les fortes valeurs de MES ne sont pas retranscrites par les mesures de turbidité. En dehors de ce cas particulier, la variabilité spatiale pour ces paramètres est conforme à ce qui est généralement observé sur le littoral. Sur les stations plus côtières et donc moins profondes, la remise en suspension de particules du fond, les apports continentaux par les bassins versants ainsi que des biomasses phytoplanctoniques généralement plus élevées, peuvent expliquer ces variations observées le long d'un gradient côte/large.

Concernant les **éléments chimiques (Hydrazine et Ethanolamine)**, les concentrations sont systématiquement restées inférieures à la limite de quantification sur l'ensemble de la zone et ceci au cours des trois périodes d'échantillonnage.

IV. Surveillance écologique et halieutique

Chaque année, le CNPE confie la réalisation de la surveillance écologique et halieutique à IFREMER.

L'objectif de la surveillance pérenne est de suivre l'évolution naturelle du milieu récepteur et de déceler une évolution anormale de l'écosystème, sur le long terme, qui pourrait être attribuable au fonctionnement du CNPE. Au contraire, les surveillances en conditions climatiques exceptionnelles et situations exceptionnelles ont plutôt pour objectif d'étudier la réponse à court terme de l'écosystème sous conditions de débits contraints et températures ambiantes élevées, le CNPE étant en fonctionnement.

La synthèse du rapport de surveillance, réalisée par IFREMER, est présentée cidessous.

Les résultats observés cette année à travers le compartiment halieutique ont été impactés par les mauvaises conditions météorologiques lors de la campagne de septembre. Les indices de la campagne de juin sont cohérents et s'inscrivent dans la continuité de la dynamique historique. Ils ne montrent pas de caractéristique ou de particularité permettant d'établir un lien direct avec les activités réduites du CNPE en 2020.

Le rapport complet est disponible sur demande auprès du CNPE de Flamanville.

V. Acoustique environnementale

L'arrêté du 7 février 2012 fixe les règles générales applicables à toutes les phases du cycle de vie des installations nucléaire de base visant à garantir la protection des intérêts contre l'ensemble des inconvénients ou des risques que peuvent présenter les INB. Le titre IV sur la maîtrise des nuisances et de l'impact sur la santé et l'environnement fixe deux critères visant à limiter l'impact du bruit des installations nucléaires de base.

Le premier critère, appelé « émergence sonore » et s'exprimant en Décibel A - dB (A) est la différence de niveau sonore entre le niveau de bruit ambiant et le bruit résiduel. L'émergence sonore se calcule à partir de mesures réalisées aux premières habitations, en Zone à Émergence Réglementée (ZER).

Le deuxième critère, en vigueur depuis le 1^{er} juillet 2013, concerne le niveau sonore mesuré en dB (A) en limite d'établissement de l'installation.

Pour répondre à ces exigences réglementaires et dans l'optique de réduire l'impact de ses installations, EDF mène depuis 1999 des études d'impact acoustique basées sur des mesures de longue durée dans l'environnement et sur les matériels. En parallèle, des modélisations 3D sont réalisées pour hiérarchiser les sources sonores les plus prépondérantes, et si nécessaire, définir des objectifs d'insonorisation.

Les principales sources de bruit des installations nucléaires sont généralement les réfrigérants atmosphériques pour les CNPE équipés, les stations de pompage, les salles des machines, les cheminées du bâtiment des auxiliaires nucléaires, et les transformateurs.

La Mission Communication du CNPE de Flamanville réalise des informations, par le biais du numéro vert du CNPE mais aussi en s'adressant directement aux mairies dans un rayon de 2 km (Commune de Flamanville), lors de la réalisation d'opérations pouvant générer du bruit, comme par exemple lors de la réalisation de certains essais périodiques sur l'installation.

Partie VII - Évaluation de l'impact environnemental et sanitaire des rejets de l'installation

Une surveillance des niveaux de radioactivité est effectuée dans l'environnement du CNPE de Flamanville dans le cadre du programme de surveillance réglementaire et du suivi radioécologique du CNPE (cf. Partie VI Surveillance de l'environnement, I- Surveillance de la radioactivité dans l'environnement).

Les résultats de cette surveillance et des mesures associées montrent des niveaux très faibles de radioactivité artificielle dans l'environnement du CNPE dont la majeure partie trouve son origine dans d'autres sources (retombées atmosphériques des essais nucléaires, Tchernobyl,...). L'analyse détaillée des résultats est présentée dans le rapport du suivi radioécologique annuel réalisé par IRSN, présenté en annexe I.

L'IRSN produit également un bilan radiologique de l'environnement français disponible au lien suivant :

https://www.irsn.fr/FR/expertise/rapports_expertise/Documents/environnement/IRSN-ENV_Bilan-Radiologique-France-2015-2017.pdf

À partir des activités annuelles rejetées par radionucléide, une dose efficace³ est calculée en tenant compte des mécanismes de transfert de l'environnement jusqu'à l'homme. Cette dose permet de « mesurer » le niveau d'exposition attribuable aux rejets d'effluents radioactifs liquides et atmosphériques d'une installation et de le positionner par rapport à la limite réglementaire pour l'exposition de la population aux rayonnements ionisants conformément à l'article R1333-11 du Code de la Santé Publique.

Le calcul de dose efficace annuelle tient compte de données spécifiques à chaque CNPE telles que les conditions météorologiques, les habitudes alimentaires des riverains, les conditions de dispersion des effluents rejetés dans le milieu récepteur, etc. Les données alimentaires et les temps consacrés aux activités intérieures ou extérieures dans les environnements terrestre et aquatique ont été actualisés en 2013-2014 avec les dernières bases de données et enquêtes disponibles.

Les principales hypothèses retenues sont les suivantes :

- les habitants consomment pour partie des aliments produits dans l'environnement proche du CNPE ;
- ils vivent toute l'année sur leur lieu d'habitation (non prise en compte de leurs périodes d'absence pour le travail, les vacances...).

Rapport environnemental annuel – 2020 – CNPE de Flamanville

55

 $^{^1}$ La **dose efficace** est la somme des doses absorbées par tous les tissus, pondérée d'un facteur radiologique W_R (W_R = Radiation Weighting factor) facteur de pondération du rayonnement) pour tenir compte de la qualité du rayonnement ($\alpha,\,\beta,\,\gamma...$) et d'un facteur de pondération tissulaire W_T (W_T = Tissu Weighting factor) correspondant à la radiosensibilité relative du tissu exposé. La dose efficace a pour objectif d'apprécier le risque total et s'exprime en sievert (Sv). Elle est appelée communément « **dose** $^{\rm N}$

Les principaux facteurs d'incertitudes dans le calcul de dose sont associés essentiellement à quelques données et paramètres difficiles à acquérir sur le terrain, tels que certaines caractéristiques de l'environnement et comportements précis des populations riveraines (les rations alimentaires par exemple).

L'échelle suivante présente des ordres de grandeur de doses résultant de situations courantes et la comparaison aux seuils réglementaires :

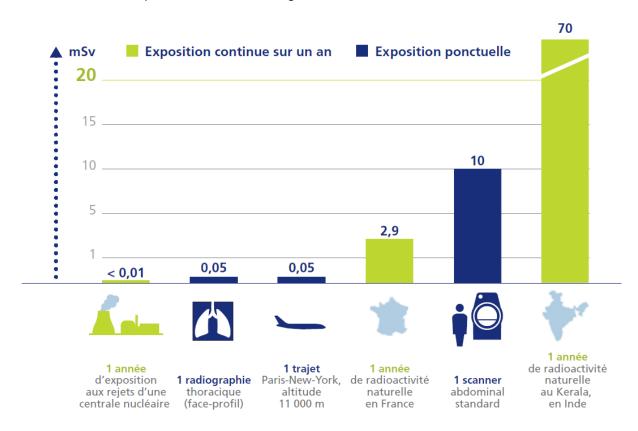


Figure 1 : Echelle des ordres de grandeur de doses résultant de situations courantes et comparaison aux seuils réglementaires (Source : EDF)

L'exposition moyenne de la population française aux rayonnements ionisants (d'origine naturelle et artificielle) est de 4,5 mSv/an. Les contributions des différentes sources d'exposition sont présentées sur la figure 2 ci-après.

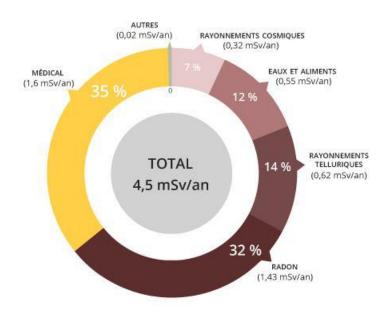


Figure 2 : Part relative des différentes sources d'expositions de la population française aux rayonnements ionisants (Source : Bilan IRSN 2015)

Les tableaux suivants fournissent les valeurs de dose efficace totale calculées à partir des rejets radioactifs réels de l'année 2020 effectués par le CNPE de Flamanville, pour la personne représentative. Cette personne représente les individus pouvant recevoir la dose efficace annuelle maximale induite par les rejets d'effluents radioactifs autorisés du CNPE.

ADULTE	Exposition externe (mSv)	Exposition interne (mSv)	Total (mSv)
Rejets d'effluents à l'atmosphère	2,2E-06	8,6E-06	1,1E-05
Rejets d'effluents liquides	4,0E-08	8,8E-06	8,8E-06
Total	2,2E-06	1,7E-05	2,0E-05

ENFANT DE 10 ANS	Exposition externe (mSv)	Exposition interne (mSv)	Total (mSv)
Rejets d'effluents à l'atmosphère	2,2E-06	7,4E-06	9,6E-06
Rejets d'effluents liquides	1,3E-07	5,4E-06	5,5E-06
Total	2,3E-06	1,3E-05	1,5E-05

ENFANT DE 1 AN	Exposition externe (mSv)	Exposition interne (mSv)	Total (mSv)
----------------	--------------------------	-----------------------------	-------------

Rejets d'effluents à l'atmosphère	2,3E-06	2,1E-05	2,4E-05
Rejets liquides	5,0E-08	1,1E-06	1,2E-06
Total	2,4E-06	2,2E-05	2,5E-05

Les valeurs de doses calculées sont inférieures à 1.10-4 mSv/an pour l'adulte, pour l'enfant de 10 ans et pour l'enfant de 1 an.

Les valeurs de doses calculées pour l'adulte, l'enfant de 10 ans et l'enfant de 1 an, attribuables aux rejets d'effluents radioactifs de l'année 2020 sont plus de 10 000 fois inférieures à la limite d'exposition fixée à 1 mSv par an pour la population, par l'article R1333-11 du Code de la Santé Publique. L'ensemble des populations résidant de manière permanente ou temporaire autour du CNPE est exposé à une dose efficace inférieure ou égale à la dose calculée pour la personne représentative, présentée ci-dessus.

Ces résultats sont cohérents avec ceux de l'étude d'impact de l'installation, dont les hypothèses et modalités de calcul restent pertinentes au regard des évolutions scientifiques.

Partie VIII - Gestion des déchets

Comme toute activité industrielle, la production d'électricité d'origine nucléaire génère des déchets, dont des déchets conventionnels et radioactifs à gérer avec la plus grande rigueur.

Responsable légalement, industriellement et financièrement des déchets qu'il produit, EDF a, depuis l'entrée en service de ses premières centrales nucléaires, mis en œuvre des procédés adaptés qui permettent de protéger efficacement l'environnement, les populations, les travailleurs et les générations futures contre les risques associés à ses déchets.

La démarche industrielle repose sur 4 principes :

- limiter les quantités produites et la nocivité des déchets ;
- trier par nature et niveau de radioactivité;
- conditionner et préparer la gestion à long terme ;
- isoler les déchets de l'homme et de l'environnement.

Pour les installations nucléaires de base du CNPE de Flamanville, la limitation de la production des déchets se traduit par la réduction, pour atteindre des valeurs aussi basses que possible, du volume et de l'activité des déchets dès la phase d'achat de matériel ou de la prestation, durant la phase de préparation des chantiers et lors de leur réalisation.

Les déchets radioactifs

Les modalités de gestion mises en œuvre visent notamment à ce que les déchets radioactifs n'aient aucune interaction avec les eaux (nappe et cours d'eau) et les sols. Les opérations de tri, de conditionnement, de préparation à l'expédition s'effectuent dans des locaux dédiés et équipés de systèmes de collecte d'effluents éventuels.

Avant de sortir des bâtiments, les déchets radioactifs bénéficient tous d'un conditionnement étanche qui constitue une barrière à la radioactivité et prévient tout transfert dans l'environnement.

Les contrôles réalisés par les experts internes et les pouvoirs publics sont nombreux et menés en continu pour vérifier l'absence de contamination.

Les déchets conditionnés et contrôlés sont ensuite expédiés vers les filières de traitement ou de stockage définitif.

Les mesures prises pour limiter les effets de ces déchets sur la santé comptent parmi les objectifs visés par les dispositions mises en œuvre pour protéger la population et les intervenants des risques de la radioactivité. L'ensemble de ces dispositions constitue la radioprotection. Ainsi, pour protéger les personnes travaillant dans les centrales, et plus particulièrement les équipes chargées de la gestion des déchets radioactifs, des mesures simples sont prises, comme la mise en place d'un ou plusieurs écrans (murs et dalles de béton, parois en plomb, verres spéciaux chargés en plomb, eau des piscines, etc.), dont l'épaisseur est adaptée à la nature du rayonnement du déchet.

Les catégories de déchets radioactifs

Selon la durée de vie des éléments radioactifs contenus et le niveau d'activité radiologique qu'ils présentent, les déchets sont classés en plusieurs catégories. On distingue

les déchets « à vie courte » des déchets « à vie longue » en fonction de leur période (une période s'exprime en années, jours, minutes ou secondes. Elle quantifie le temps au bout duquel l'activité radioactive initiale du déchet est divisée par deux).

Tous les déchets dits « à vie courte » ont une période inférieure ou égale à 31 ans. Ils bénéficient de solutions de gestion industrielles définitives dans les centres spécialisés de l'Andra situés dans l'Aube à Morvilliers (déchets de très faible activité, TFA) ou Soulaines (déchets de faible à moyenne activité à vie courte, FMAVC).

Ces déchets proviennent essentiellement :

- des systèmes de filtration (épuration du circuit primaire : filtres, résines, concentrats, boues...);
- des opérations de maintenance sur matériels : pompes, vannes...
- des opérations d'entretien divers : vinyles, tissus, gants...
- de certains travaux de déconstruction des centrales mises à l'arrêt définitif (gravats, pièces métalliques...).

Le conditionnement des déchets triés consiste à les enfermer dans des emballages ou contenants adaptés pour éviter toute dissémination de la radioactivité. On obtient alors des déchets conditionnés, appelés aussi «colis de déchets». Sur les sites nucléaires, le choix du conditionnement dépend de plusieurs paramètres, notamment du niveau d'activité, des dimensions du déchet, de l'aptitude au compactage, à l'incinération et de la destination du colis. Ainsi, le conditionnement de ces déchets est effectué dans différents types d'emballages : coque ; fût ou caisson métallique ; fût plastique (PEHD : polyéthylène haute densité) pour les déchets destinés à l'incinération dans l'installation Centraco ; big-bag ou casier.

Les progrès constants accomplis, tant au niveau de la conception des centrales que de la gestion du combustible et de l'exploitation des installations, ont déjà permis de réduire les volumes de déchets à vie courte de façon significative. Ainsi, les volumes des déchets d'exploitation ont été divisés par trois depuis 1985, à production électrique équivalente.

Les déchets dits « à vie longue » ont une période supérieure à 31 ans. Ils sont générés :

- par le traitement du combustible nucléaire usé effectué dans l'usine ORANO de la Hague, dans la Manche ;
- par la mise au rebut de certaines pièces métalliques issues des réacteurs ;
- par la déconstruction des centrales d'ancienne génération.

Le remplacement de certains équipements du cœur des réacteurs actuellement en exploitation (« grappes » utilisées pour le réglage de la puissance, fourreaux d'instrumentation, etc.) produit des déchets métalliques assez proches en typologie et en activité des structures d'assemblages de combustible : il s'agit aussi de déchets « de moyenne activité à vie longue » (MAVL) qui sont entreposés dans les piscines de désactivation.

Le traitement des combustibles usés consiste à séparer les matières qui peuvent être valorisées et les déchets. Cette opération est réalisée dans les ateliers spécialisés situés dans l'usine ORANO.

Après une utilisation en réacteur pendant quatre à cinq années, le combustible nucléaire contient encore 96 % d'uranium qui peut être recyclé pour produire de nouveaux assemblages de combustible. Les 4 % restants (les « cendres » de la combustion nucléaire) constituent les déchets ultimes qui sont vitrifiés et coulés dans des conteneurs en acier

inoxydable : ce sont des déchets « de haute activité à vie longue (HAVL) ». Les parties métalliques des assemblages sont compactées et conditionnées dans des conteneurs en acier inoxydable qui sont entreposés dans l'usine précitée : ce sont des déchets « de moyenne activité à vie longue (MAVL) ».

Depuis la mise en service du parc nucléaire d'EDF, et à production énergétique équivalente, l'amélioration continue de l'efficacité énergétique du combustible a permis de réduire de 25 % la quantité de combustible consommée chaque année. Ce gain a permis de réduire dans les mêmes proportions la production de déchets issus des structures métalliques des assemblages de combustible.

La déconstruction produit également des déchets de catégorie similaire. Enfin, les empilements de graphite des anciens réacteurs dont la déconstruction est programmée généreront des déchets « de faible activité à vie longue (FAVL) ».

En ce qui concerne les déchets de haute et moyenne activité « à vie longue », la solution industrielle de gestion à long terme retenue par la loi du 28 juin 2006 est celle du stockage géologique (projet Cigéo, en cours de conception). Les déchets déjà existants sont pour le moment entreposés en toute sûreté sur leur lieu de production dans l'attente de la mise en service de l'installation ICEDA (Installation de Conditionnement et d'Entreposage des Déchets Activés).

Le tableau ci-dessous présente les différentes catégories de déchets, les niveaux d'activité et les conditionnements utilisés.

Types déchet	Niveau d'activité	Durée de vie	Classification	Conditionnement	
Filtres d'eau et résines primaires	Faible et Moyenne		FMA-VC (faible et moyenne activité à vie courte)	Fûts, coques	
Filtres d'air Résines secondaires					
Concentrats, boues			Courte		
Pièces métalliques Matières plastiques, cellulosiques Déchets non métalliques (gravats)	Très faible, Faible et Moyenne		TFA (très faible activité), FMA-VC	Casiers, big-bags, futs, coques, caissons	
Déchets graphite	Faible		FA-VL (faible activité à vie longue)	Entreposage sur site	
Pièces métalliques et autres déchets actives	Moyenne	Longue	MA-VL (moyenne activité à vie longue)	Entreposage sur site (en piscine de refroidissement pour les grappes et autres déchets actives REP)	

Le transport des déchets

Après conditionnement, les colis de déchets peuvent être orientés vers :

- le centre industriel de regroupement, d'entreposage et de stockage des déchets de très faible activité (CIRES) exploité par l'Andra et situé à Morvilliers (Aube) ;
- le centre de stockage de l'Aube (CSA) pour les déchets à faible ou moyenne activité exploité par l'Andra et situé à Soulaines (Aube) ;
- l'installation Centraco exploitée par Cyclife France et située à Marcoule (Gard) qui reçoit les déchets destinés à l'incinération et à la fusion. Après traitement, ces déchets sont évacués vers l'un des deux centres exploités par l'Andra.

DE LA CENTRALE AUX CENTRES DE TRAITEMENT ET DE STOCKAGE

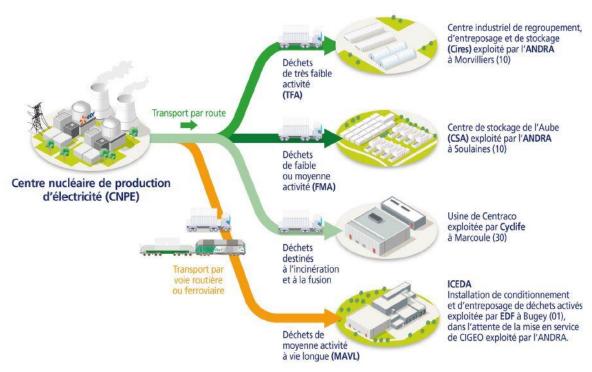


Figure 1 : Transport des déchets radioactifs (Source : EDF)

3. Les quantités de déchets entreposées au 31/12/2020

Le tableau suivant présente les quantités de déchets en attente de conditionnement au 31 décembre 2020 pour les 2 réacteurs en fonctionnement du CNPE de Flamanville.

Catégorie déchet	Quantité entreposée au 31/12/2020	Commentaires		
TFA	62 tonnes	En conteneur sur l'aire TFA		
FMAVC (Liquides)	9,47 tonnes	Effluents du lessivage chimique, huiles, solvants		
FMAVC (Solides)	117,99 tonnes	Localisation Bâtiment des Auxiliaires Nucléaire et Bâtiment Auxiliaire de Conditionnement (BAC)		

MAVL		Concerne les grappes et les
		étuis dans les piscines de
	142 objets	désactivation (déchets
		technologiques, galette inox,
		bloc béton et chemise graphite)

Le tableau suivant présente les quantités de déchets conditionnés en attente d'expédition au 31 décembre 2020 pour les 2 réacteurs en fonctionnement du CNPE de Flamanville.

Catégorie déchet	Quantité entreposée au 31/12/2020	Type d'emballage		
TFA	165 colis	Tous types d'emballages confondus		
FMAVC (Solides)	517 colis	Coques béton, fûts (métalliques, PEHD) et autres (caissons, pièces massives,		

Le tableau suivant présente le nombre de colis évacués et les sites d'entreposage en 2020 pour les 2 réacteurs en fonctionnement du CNPE de Flamanville.

Site destinataire	Nombre de colis évacués
Cires à Morvilliers	60
CSA à Soulaines	628
Centraco à Marcoule	2526

En 2020, 3214 colis ont été évacués vers les différents sites de traitement ou de stockage appropriés (Centraco et Andra).

II. Les déchets non radioactifs

Conformément à l'arrêté INB et à la décision ASN 2015-DC-0508, les INB établissent et gèrent un plan de zonage déchets, qui vise à distinguer :

- les zones à déchets conventionnels (ZDC) d'une part, à l'intérieur desquelles les déchets produits ne sont ni contaminés ou activés ni susceptibles de l'être ;
- les zones à production possible de déchets nucléaires (ZPPDN) d'autre part, à l'intérieur desquelles les déchets produits sont contaminés, activés ou susceptibles de l'être.

Les déchets conventionnels produits par les INB sont ceux issus de ZDC et sont classés en 3 catégories :

- les déchets inertes (DI), qui ne contiennent aucune trace de substances toxiques ou dangereuses, et ne subissent aucune modification physique, chimique ou biologique importante pour l'environnement (déchets minéraux, verre, déblais, terres et gravats, ...);

- les déchets non dangereux non inertes, qui ne présentent aucune des propriétés qui rendent un déchet dangereux (gants, plastiques, déchets métalliques, papier/carton, caoutchouc, bois, câbles électriques, ...);
- les déchets dangereux (DD) qui contiennent des substances dangereuses ou toxiques, ou sont souillés par de telles substances (accumulateurs au plomb, boues/terres marquées aux hydrocarbures, résines, peintures, piles, néons, déchets inertes et industriels banals souillés, déchets amiantifères, bombes aérosols, ...).

Le tableau ci-dessous présente les quantités de déchets conventionnels produites en 2020 par le CNPE.

Quantités 2020 en	Déchets dangereux		Déchets non dangereux non inertes		Déchets inertes		Total	
tonnes	Produits	Valorisés	Produits	Valorisés	Produits	Valorisés	Produits	Valorisés
Flamanville 1/2	278	161	619	494	1697	1690	2594	2345
Flamanville 3	351	303	532	422	262	262	1145	987

Les déchets conventionnels sont gérés conformément aux principes définis dans la directive cadre sur les déchets :

- réduire leur production et leur dangerosité par une gestion optimisée,
- favoriser le recyclage et la valorisation.

De nombreuses actions sont mises en œuvre par EDF pour en optimiser la gestion, afin notamment d'en limiter les volumes et les effets sur la santé et l'environnement. Parmi celles-ci, peuvent être citées :

- la création en 2006 du Groupe Déchets Economie Circulaire, chargé d'animer la gestion des déchets conventionnels pour l'ensemble des entités d'EDF. Ce groupe, qui s'inscrit dans le cadre du Système de Management Environnemental certifié ISO 14001 d'EDF, est composé de représentants des Divisions/Métiers des différentes Directions productrices de déchets. Ses principales missions consistent à apporter de la cohérence en proposant des règles et outils de référence aux entités productrices de déchets,
- les entités productrices de déchets conventionnels disposent d'un outil informatique qui permet en particulier de maîtriser les inventaires de déchets et leurs voies de gestion,
- la définition depuis 2008 d'un objectif de valorisation pour l'ensemble des déchets valorisables. Cet objectif est actuellement fixé à 90%,
- la prise en compte de la gestion des déchets dans les contrats de gestion des sites,
- la mise en place de structures opérationnelles assurant la coordination et la sensibilisation à la gestion des déchets de l'ensemble des métiers,
- la création de stages de formation spécifiques « gestion des déchets conventionnels »,
- le recensement annuel des actions de prévention de production des déchets.

En 2020, les 3 unités de production du CNPE de Flamanville ont produit 3739 tonnes de déchets conventionnels : 89 % de ces déchets ont été valorisés ou recyclés.

ABREVIATIONS

- ANDRA Agence Nationale pour la gestion des Déchets RAdioactifs
- ASN Autorité Sûreté Nucléaire
- CNPE Centre Nucléaire de Production d'Électricité
- COT Carbone Organique Total
- DBO5 Demande Biologique en Oxygène sur 5 jours
- DCO Demande Chimique en Oxygène
- DUS Diesel d'Ultime Secours
- EBA Ventilation de balayage en circuit ouvert tranche à l'arrêt
- ESE Évènement Significatif Environnement
- FMA Faible Moyenne Activité
- ICPE Installations Classées pour la Protection de l'Environnement
- INB Installation Nucléaire de Base
- IRSN Institut de Radioprotection et de Sûreté Nucléaire
- ISO International Standard Organization
- KRT Chaîne de mesure de radioactivité
- MES Matières En Suspension
- PA Produit d'Activation
- PF Produit de Fission
- REX Retour d'Expérience
- SME Système de Management de l'Environnement
- SMP Station Multi Paramètres
- TAC Turbine à Combustion
- TEU Traitement des Effluents Usés
- TFA Très Faible Activité
- THE Très Haute Efficacité
- UFC Unité Formant Colonie

N'imprimez ce document que si vous en avez l'utilité.

EDF SA 22-30, avenue de Wagram 75382 Paris cedex 08 Capital de 1 525 484 813 euros 552 081 317 R.C.S. Paris www.edf.fr

CNPE de Flamanville 123 BP4 50340 Les Pieux 02.33.78.77.77