“Nuclear Safety: Our Overriding Priority”

EDF Group Report 2015

In response to FTSE4Good Nuclear Criteria
Table of Contents

1. EDF GROUP ... 4
2. NUCLEAR ASSETS OF EDF GROUP ... 5
 2.1 EDF SA .. 6
 2.2 EDF ENERGY .. 9
 2.3 CENG .. 12
 2.4 TNPJVC .. 13
3. SAFETY AND RADIOLOGICAL PROTECTION ... 14
 3.1 Safety Policy and implementation at EDF Group .. 14
 3.2 Incidents and events .. 17
 3.3 Unplanned outages ... 19
 3.4 Nuclear safety assessments .. 21
 3.5 Risk Assessment .. 25
 3.6 Emergency Preparedness ... 27
 3.7 Adaptation to Climate Change .. 28
 3.8 Lessons learned from the Fukushima accident ... 30
 3.9 Radiation Exposure (to workers and the general public) .. 31
 3.10 Site Security ... 34
4. RADIOACTIVE MATERIALS AND WASTE ... 35
 4.1 General overview ... 35
 4.2 Regulatory context .. 35
 4.3 MANAGEMENT OF RADIOACTIVE WASTE ... 37
 4.4 Spent Fuel .. 40
 4.5 radioactive waste from Decommissioning ... 42
5. TRAINING .. 45
 5.1 Overview on Human Resources and training policy ... 45
 5.2 Policy implementation ... 47
6. REPORTING ... 48
 6.1 Policy ... 48
 6.2 Policy implementation ... 48
 6.3 Performance Results 2008-2014 .. 50
Table of Illustrations

Figure 1: EDF commitment “Leading the Energy Change” ... 5
Figure 2: Map of French nuclear power plants ... 6
Figure 3: French regulatory pyramid ... 9
Figure 4: EDF Energy nuclear power plants ... 11
Figure 5: Sizewell Nuclear Power Plant ... 12
Figure 6: EDF Group Nuclear Safety policy .. 15
Figure 7: Daily safety dialogue in the control room ... 22
Figure 8: Crisis preparedness drill .. 27
Figure 9: Nuclear Safety, our overriding priority ... 29
Figure 10: Waste characterisation ... 38
Figure 11: Apprentice graduation .. 46
1. **EDF GROUP**

EDF is the world’s leading nuclear energy company, and operates across all electricity business sectors. EDF holds substantial positions in several major countries worldwide. Key facts and figures in 2014 are published in the following document:

EDF Group places sustainability at the core of its corporate strategy and has adopted 9 commitments responding to three priority challenges:

- **The environment:** Tackling climate change and protecting biodiversity:
 1. Remain the lowest carbon emitter among the major European energy companies, especially electric utilities
 2. Adapt our fleet and our customer offers to promote climate protection.
 3. Reduce our environmental impact, especially on biodiversity.

- **Social responsibility:** Improving access to energy and developing close links with local communities:
 4. Promote access to energy and energy efficiency.
 5. Develop and sustain links with local communities where we work.
 6. Support education on major energy issues.

- **Governance:** Contributing to the debate on sustainable development through dialogue, information, and communication:
 7. Continue to implement strategies based on the values we share with all our employees and stakeholders.
 8. Regularly report on our corporate social responsibility initiatives and results.
 9. Contribute to the debate on sustainable development at both a national and international level.

These commitments are detailed in a position statement jointly signed by all CEOs of EDF Group companies:
Nuclear Safety: Our Overriding Priority

Figure 1: EDF commitment “Leading the Energy Change”

2. NUCLEAR ASSETS OF EDF GROUP

EDF owns nuclear facilities on several continents:

- in France, where the parent company owns and operates 58 reactors and is building a new one using the most advanced technology - the European Pressurised Water Reactor (EPR)
- in the UK, where EDF Energy owns (jointly with its minority shareholding partner Centrica, 20% stake) and operates 15 reactors. It also has plans to build four new EPRs.

EDF also owns other assets in several nuclear companies, without operational responsibilities. The performance of these assets results from the operating companies and is therefore not consolidated into the results of EDF Group, in line with international accounting regulations. These assets are as follows:

- CENG in the USA, a joint venture between Exelon (50.01%) and EDF (49.99%), owns five reactors operated solely by Exelon.
- Tihange 1 in Belgium: EDF has a 50% investment in the plant (owned by EDF Belgium) but Electrabel is the sole operator of the plant\(^1\).
- Taishan in China where TNPJVJC, the joint company held by China General Nuclear Power Group (51%), Yudean (19%) and EDF (30%), will own and operate two new EPR reactors currently under construction.

\(^1\) Signature of a General Agreement on 16 December 1996. EDF contributes 50% to all operational expenses and capital investments during operation and post-operation (following final shutdown), but not to decommissioning itself.
EDF also owns stakeholdings in companies in Belgium and Switzerland:

- In Belgium EDF owns 63.5% of EDF Luminus which owns 10% of the investment of Tihange 2-3 and Doel 3-4. EDF Luminus has no operational involvement or responsibility in those plants which are fully operated by Electrabel.
- In Switzerland EDF owns 25.1% of ALPIQ which owns 40% of Kernkraftwerk Gösgen-Däniken AG which is the operating company of Gösgen power plant, and 32.4% of Leibstadt AG which is the operating company of Leibstadt plant. ALPIQ has no involvement or responsibility in the operation of Gösgen and Leibstadt NPP.

EDF also holds nuclear power service contracts, mainly for technical assistance, e.g. in China or South Africa.

2.1 EDF SA

EDF SA owns and operates in France the largest nuclear fleet in the world, built by the Group as architect-engineer. The nuclear fleet includes 58 reactors with three different power levels (900MWe, 1300MWe and 1450MWe).

![Figure 2: Map of French nuclear power plants](image-url)
REACTORS IN OPERATION

<table>
<thead>
<tr>
<th>SITE</th>
<th>Number of reactors</th>
<th>TYPE</th>
<th>POWER (MW)</th>
<th>COMMISSIONING YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fessenheim</td>
<td>2</td>
<td>CP0-PWR</td>
<td>880</td>
<td>1977</td>
</tr>
<tr>
<td>Bugey</td>
<td>4</td>
<td>CP0-PWR</td>
<td>2 x 910-2 x 880</td>
<td>1978-79</td>
</tr>
<tr>
<td>Dampierre</td>
<td>4</td>
<td>CP1-PWR</td>
<td>890</td>
<td>1980-81</td>
</tr>
<tr>
<td>Gravelines</td>
<td>4</td>
<td>CP1-PWR</td>
<td>910</td>
<td>1980-81</td>
</tr>
<tr>
<td>Gravelines</td>
<td>6</td>
<td>CP1-PWR</td>
<td>910</td>
<td>1984-85</td>
</tr>
<tr>
<td>Tricastin</td>
<td>4</td>
<td>CP1-PWR</td>
<td>915</td>
<td>1980-81</td>
</tr>
<tr>
<td>Blayais</td>
<td>4</td>
<td>CP1-PWR</td>
<td>910</td>
<td>1981-83</td>
</tr>
<tr>
<td>St Laurent B</td>
<td>2</td>
<td>CP2-PWR</td>
<td>915</td>
<td>1981</td>
</tr>
<tr>
<td>Chinon B</td>
<td>4</td>
<td>CP2-PWR</td>
<td>905</td>
<td>1982-87</td>
</tr>
<tr>
<td>Cruas</td>
<td>4</td>
<td>CP2-PWR</td>
<td>915</td>
<td>1983-84</td>
</tr>
<tr>
<td>Paluel</td>
<td>4</td>
<td>P4-PWR</td>
<td>1330</td>
<td>1984-86</td>
</tr>
<tr>
<td>Flamanville</td>
<td>2</td>
<td>P4-PWR</td>
<td>1330</td>
<td>1985-86</td>
</tr>
<tr>
<td>St Alban</td>
<td>2</td>
<td>P4-PWR</td>
<td>1335</td>
<td>1985-86</td>
</tr>
<tr>
<td>Cattenom</td>
<td>4</td>
<td>P'4-PWR</td>
<td>1300</td>
<td>1986-91</td>
</tr>
<tr>
<td>Belleville</td>
<td>2</td>
<td>P'4-PWR</td>
<td>1310</td>
<td>1987-88</td>
</tr>
<tr>
<td>Nogent</td>
<td>2</td>
<td>P'4-PWR</td>
<td>1310</td>
<td>1987-88</td>
</tr>
<tr>
<td>Golfech</td>
<td>2</td>
<td>P'4-PWR</td>
<td>1310</td>
<td>1990-93</td>
</tr>
<tr>
<td>Penly</td>
<td>2</td>
<td>P'4-PWR</td>
<td>1330</td>
<td>1990-92</td>
</tr>
<tr>
<td>Chooz B</td>
<td>2</td>
<td>N4-PWR</td>
<td>1500</td>
<td>1996-97</td>
</tr>
<tr>
<td>Civaux</td>
<td>2</td>
<td>N4-PWR</td>
<td>1495</td>
<td>1997-99</td>
</tr>
</tbody>
</table>

EPR UNDER CONSTRUCTION, our third generation reactor

EDF SA is currently building a new 1,630 MW EPR at the Flamanville site.

The EPR, a pressurised water reactor (PWR), belongs to the latest and third generation of nuclear reactors. It is safer, more powerful, and more environmentally friendly than its predecessors. Due to its “evolutionary” design, the EPR incorporates the full experience feedback compiled by its designers and by French and German operators over more than thirty years.

The EPR has a power of 1630 MW and will consume 15% less fuel thanks to a more efficient reactor core and a higher efficiency turbine.

EDF has set ambitious environmental targets for the EPR, leading to a series of measures intended to further mitigate the impacts of a power plant on the environment. In normal operating conditions, radioactive and chemical discharges \(^2\) will be at least 30% lower per MWh generated. In addition, the higher combustion rate and the core design will reduce by around 30% the amount of radioactive waste versus the current 1300 MW reactors.

In 2014, many key milestones were successfully reached at the construction site: introduction of the reactor vessel, installation of the first of four steam generators and of the pressuriser, completion of concrete works for the inner confinement enclosure, commissioning of the control room, etc. Another highlight of the year was the first major tests ever carried out on an EPR, in particular on the Essential Service Water system at the pumping station.

\(^2\) Excluding tritium and carbon 14, which will be released in quantities equivalent to existing plants (proportionately to energy produced)

REACTORS UNDER DECOMMISSIONING:

EDF SA is currently decommissioning 9 reactors:

<table>
<thead>
<tr>
<th>Site</th>
<th>NUMBER OFreactors</th>
<th>TYPE OF REACTOR</th>
<th>POWER (MW)</th>
<th>COMMISSIONING YEAR</th>
<th>FINAL SHUTDOWN YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brennobilis</td>
<td>1</td>
<td>Heavy water Reactor</td>
<td>70</td>
<td>1967</td>
<td>1985</td>
</tr>
<tr>
<td>Chooz A</td>
<td>1</td>
<td>REP</td>
<td>305</td>
<td>1967</td>
<td>1991</td>
</tr>
<tr>
<td>Creys-Malville</td>
<td>1</td>
<td>FBR</td>
<td>1200</td>
<td>1986</td>
<td>1998</td>
</tr>
<tr>
<td>St Laurent</td>
<td>2</td>
<td>UNGG</td>
<td>500 530</td>
<td>1969 1971</td>
<td>1990 1992</td>
</tr>
<tr>
<td>Bugey</td>
<td>1</td>
<td>UNGG</td>
<td>540</td>
<td>1972</td>
<td>1994</td>
</tr>
</tbody>
</table>

EDF SA also owns the nuclear subsidiary Socodei which operates Centraco, a facility treating and conditioning low level radioactive waste. Centraco, located in the town of Codolet (Gard), treats waste metals in its melting plant and combustible waste in its incinerator.

Regulatory context

TSN Law:

EDF SA’s nuclear activities in France are subject to the legislation of 13 June 2006, concerning Transparency and Security in the Nuclear field (“TSN Law”, now codified in the Environment Code Books I and V). The legislation includes three pillars:

- **An institutional pillar**, with the creation of the Nuclear Safety Authority (ASN, Autorité de Sûreté Nucléaire), an independent administrative authority.

- **A pillar related to public information and transparency**, with the legislative confirmation of the High Committee for Transparency and Information on Nuclear Safety, and Local Information Commissions in the vicinity of each nuclear facility. Each facility has the legal obligation to draft and publish an annual report describing the measures taken in terms of nuclear safety, radiation protection and the environment. These documents are available for consultation on the EDF web-site[^3].

- **A procedural pillar** specifying the authorisation regime applicable to basic nuclear facilities throughout their life span, from design to decommissioning.

The legislation is completed with the Decree of 2 November 2007 which provides further requirements to the latter pillar. The Decree defines the terms and conditions for the permitting process which includes a safety report describing:

- the measures adopted to mitigate the risks and limit the consequences of any accident,
- an assessment of the impacts of the plant on the environment and human health,
- a decommissioning plan,
- and a risk control and management analysis for all types of hazards.

The TSN law does not set a limit on service life but requires a safety review of the plant every ten years. After the 10-year inspection of each reactor, the ASN issues an opinion for the continuation of...

operation for a new 10-year period. If needed, the ASN adopts complementary requirements, in particular the conditions for water offtake, liquid and gaseous discharges and their associated limits.

The INB Ordinance adopted by the Government on 7 February 2012 sets the general regulations for “basic nuclear facilities” (*installations nucléaires de base*, or INB). Among other, this so-called “INB Ordinance” incorporates into French law a number of regulations responding to the problems raised by the Fukushima accident.

The INB Ordinance extends the scope of previously applicable regulatory provisions to environmental protection and mitigation of nuisances.

The INB Ordinance came into force on 1 July 2013.

The final shutdown and decommissioning of a nuclear facility are authorised by decree enacted by the Ministers in charge of nuclear safety; on that basis, the ASN can define specific requirements.

EDF SA’s business is subject to French regulations on handling, storage and long-term management of nuclear waste. EDF is legally responsible and liable for the nuclear waste resulting from its operations. In France, radioactive waste management is handled by the National Agency for Radioactive Waste Management (ANDRA), an industrial and commercial public entity created by the French law of 30 December 1991.

Regarding radiation protection regulations, all nuclear activities involving a risk of human exposure to ionising radiations are subject to the oversight of the State authorities. French regulations (Code of Public Health and Code of Labour) comply with the European Directives of 1996 and 1997 which set the maximum exposure by the general public at 1 mSv per year and impose a limit on exposure of workers at 20 mSv for 12 consecutive months.4

4 For more details on regulations, see the EDF Reference Document

2.2 EDF ENERGY

EDF Energy is one of the UK’s largest energy companies and its largest producer of low-carbon electricity. It generates around 20% of the UK’s electricity and employs around 15,000 people.
supplies electricity and gas to around 5.5 million residential and business customers and is the UK's biggest supplier of electricity by volume.

The company is organised into the following business units:

- The Nuclear Generation division is responsible for the safe reliable operation of 8 nuclear power plants (15 reactors, 9,600 MW), 2 coal power plants (8 units, 4,000 MW), 1 gas power station (3 units, 1,300 MW), gas storage facilities and renewable energy sources (~500 MW) in the UK with a total installed capacity of circa 16 GW.
- The Customers division includes residential and business customers, energy services, smart metering and optimisation.
- Nuclear New Build division is tasked with the delivery of the new generation of nuclear plants in line with EDF’s global programme of producing safe, affordable, reliable, low-carbon production of electricity in the UK.

EDF Energy holds 80% of Lake Acquisitions Limited (the other 20% is held by Centrica) which owns the eight nuclear power stations (15 reactors under commercial operation) of former British Energy. The acquisition process was completed in 2009.

NNB Holding Company Limited, another division of EDF Energy, aims to build four EPRs in the UK. On 21st October 2013, the UK Government and EDF Group reached commercial agreement on the key terms of a proposed investment contract for the Hinkley Point C nuclear power station in Somerset. EDF Group expects to make a final investment decision on the project in 2015. Letters of Intent have been signed with potential investment partners in the project, including two Chinese companies. EDF Group is expected to take a 45-50% equity stake with AREVA 10%, and China General Nuclear Corporation (CGN) and China National Nuclear Corporation (CNNC) sharing a 30-40% stake.

The nuclear fleet includes 15 reactors with two technologies (14 AGR and 1 PWR).

REACTORS IN OPERATION

<table>
<thead>
<tr>
<th>SITE</th>
<th>NUMBER OF REACTORS</th>
<th>TYPE OF REACTOR</th>
<th>POWER (MW)</th>
<th>COMMISSIONING YEAR</th>
<th>SCHEDULED DATE OF DECOMMISSIONING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunterston B</td>
<td>2</td>
<td>AGR</td>
<td>960</td>
<td>1976</td>
<td>2023</td>
</tr>
<tr>
<td>Hinkley Point B</td>
<td>2</td>
<td>AGR</td>
<td>944</td>
<td>1976</td>
<td>2023</td>
</tr>
<tr>
<td>Hartlepool</td>
<td>2</td>
<td>AGR</td>
<td>1180</td>
<td>1983</td>
<td>2019</td>
</tr>
<tr>
<td>Heysham 1</td>
<td>2</td>
<td>AGR</td>
<td>1155</td>
<td>1983</td>
<td>2019</td>
</tr>
<tr>
<td>Dungeness B</td>
<td>2</td>
<td>AGR</td>
<td>1044</td>
<td>1983</td>
<td>2028</td>
</tr>
<tr>
<td>Heysham 2</td>
<td>2</td>
<td>AGR</td>
<td>1222</td>
<td>1988</td>
<td>2023</td>
</tr>
<tr>
<td>Torness</td>
<td>2</td>
<td>AGR</td>
<td>1185</td>
<td>1988</td>
<td>2023</td>
</tr>
<tr>
<td>Sizewell B</td>
<td>1</td>
<td>PWR</td>
<td>1198</td>
<td>1995</td>
<td>2035</td>
</tr>
</tbody>
</table>
In December 2012, EDF Energy announced the formal operating life extensions of Hinkley Point B and Hunterston B by seven years to 2023, consistent with its target to achieve an additional seven years on average across the Advanced Gas-Cooled Reactor ("AGR") plants and 20 years for Sizewell B. In January 2015, EDF Energy announced that it has extended the expected life of its Dungeness B nuclear power station by ten years. This means it is due to continue generating low-carbon electricity until 2028, producing enough power each year to supply the equivalent of 1.5 million homes. The announcement also stated that the life extension at Dungeness B is part of a wider EDF Energy programme to extend the lives of its eight nuclear power stations. Based on the expected life extensions, all seven AGR stations and the Sizewell B PWR station will be operating in 2023 when Hinkley Point C is due to be commissioned, subject to the final investment decision.

EDF Energy has no nuclear facility under decommissioning. In the UK, decommissioning of nuclear facilities is overseen by the NDA (Nuclear Decommissioning Authority), an independent regulatory authority. The NDA also supervises the management of nuclear waste.

Regulatory context

Each nuclear power station is subject to a Nuclear Site Licence, which is issued by the Office for Nuclear Regulation (ONR). The licence has 36 conditions, which govern all aspects of safe operation of the station. The ONR monitors the performance of the power station operator, and appoints a site inspector for each station. All changes to the plant or to its operating rules that could affect nuclear safety significantly are subject to scrutiny by the ONR and may require their consent.

In the following text, the provided information about the governance of nuclear safety and waste is for the nuclear part of EDF Energy’s Generation business only. Unless specified, this information does not apply to the Nuclear New Build project (NNB Generation Company Limited) given the current stage of development of the project.
2.3 CENG

Constellation Energy Nuclear Group, LLC (CENG) was formed in December 1999 and reorganised as a joint venture in November 2009. CENG is 50.01% owned by Exelon Generation and 49.99% percent owned by Electricité de France. EDF acquired its ownership interest in CENG in November 2009. Prior to this date, CENG was a wholly-owned subsidiary of Constellation Energy Group (CEG). In March 2012, Exelon and CEG merged, which resulted in Exelon taken over CEG's 50.01% interest in CENG.

CENG owns five reactors in the states of Maryland and New York, USA\(^5\).

On 29 July 2013, Exelon and EDF announced that the two companies would work together to transfer to Exelon the operating license and operational management of the 5 CENG reactors and begin a process of integrating the operations of the CENG plants into Exelon Generation. In the new consolidated organisation, Exelon will continue to own 50.01 percent stake and EDF will continue to own 49.99% stake.

This agreement, approved by US-NRC, was finalised and implemented in early April 2014. Since then, Exelon has taken over full responsibility for the operational management of CENG nuclear facilities, thereby releasing EDF of any civil liability for nuclear operations.

EDF is therefore keeping a governance role solely through the CENG Board of Directors.

\(^5\) Long Island Power Authority owns 18% of Nine Mile Point 2
REACTORS IN OPERATION

<table>
<thead>
<tr>
<th>SITE</th>
<th>LOCATION</th>
<th>TYPE OF REACTOR</th>
<th>POWER (MW)</th>
<th>COMMISSIONING YEAR</th>
<th>LICENCE EXPIRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calvert Cliffs 1</td>
<td>Maryland</td>
<td>PWR</td>
<td>863 MW</td>
<td>1974</td>
<td>2034</td>
</tr>
<tr>
<td>Calvert Cliffs 2</td>
<td>Maryland</td>
<td>PWR</td>
<td>850 MW</td>
<td>1976</td>
<td>2036</td>
</tr>
<tr>
<td>Nine Mile Point 1</td>
<td>New York</td>
<td>BWR</td>
<td>630 MW</td>
<td>1969</td>
<td>2029</td>
</tr>
<tr>
<td>Nine Mile Point 2</td>
<td>New York</td>
<td>BWR</td>
<td>1242 MW</td>
<td>1986</td>
<td>2046</td>
</tr>
<tr>
<td>Ginna</td>
<td>New York</td>
<td>PWR</td>
<td>581 MW</td>
<td>1969</td>
<td>2029</td>
</tr>
</tbody>
</table>

Note: Nine Mile Point 2 increased its power capacity by around 140MWe in 2012.

CENG has no nuclear facility under decommissioning.

Regulatory context

In the USA, the quality and safe operation of the nuclear fleet are monitored by the Nuclear Regulatory Commission (NRC) which delivers the licence to build and operate, establishes the rules and controls their strict compliance, through inspections and with the help of a site representative (US NRC Resident Inspector). The NRC regularly assesses safety performances and publishes all corresponding reports. CENG’s nuclear business is undertaken in a predictable regulatory environment. Licences are initially granted for 40 years of operation. They can be extended by additional 20-year periods, provided that the operators commit to adequate monitoring of the key components and structures of their plants. All CENG units have applied for the extension of their licence from 40 to 60 years, and they have all been granted.

In addition, the Institute of Nuclear Power Operations (INPO), created after the Three Mile Island accident of 1979, aims to promote operational excellence through safety assessments, peer-reviews and support activities. The INPO assesses all sites every two years and also publishes a rating (used by insurance companies); it is also the prescriber and the controller of training processes for staff in charge of plant operation and maintenance, and delivers accreditations for training programmes every 4 years. INPO further provides experience feedback about major operating events, and monitors 700 performance indicators on the operation of US nuclear power plants.

The Electrical Power Research Institute (EPRI) provides substantial technical support to US nuclear operators, conducts specialised research in its laboratories and collects experience feedback on equipment behaviour on behalf of the industry.

EDF Group has been a permanent member of INPO and EPRI for many years and has seconded liaison engineers to INPO in Atlanta and to EPRI in Palo Alto and Charlotte.

TNPJVC

EDF owns a 30% equity stake in Taishan Nuclear Power Joint Venture Company limited (TNPJVC), created to build and operate two EPR reactors in Taishan, in the southern province of Guangdong (China). China Guangdong Nuclear Power Company (CGNPC) owns the majority of the equity interest in TNPJVC in line with PRC law. For the first time EDF Group is an investor in nuclear power generation in China⁶.

Following the building permit award, the concrete slab for the reactor building of Unit 1 was poured in October 2009, and in April 2010 at Unit 2. This initial step was followed with the installation of the vessel of Unit 1 in mid-2012, and the installation of the reactor domes in late 2012.

Activities of electromechanical assembly and commissioning tests on various systems continued in 2014 at both reactor units. The last major components were delivered for Unit 2; the vessel was

⁶ EDF also has assistance service contracts with CGN at Daya Bay and Ling Ao, but without any operational responsibility.
Nuclear Safety : Our Overriding Priority

installed and welding has started on the primary circuit. The full-scale operation simulator was commissioned, and used to administer the operators’ certification tests.

Regulatory context

The design, equipment manufacturing, construction, commissioning, start-up testing and operation of nuclear facilities in China are governed by a broad corpus of regulations inspired by IAEA guidelines and by French and US regulatory practices.

The National Nuclear Safety Administration (“NNSA”) is the nuclear authority in charge of controlling nuclear facilities at all stages of construction and operation, and keeps inspectors permanently on the sites.

The commissioning authorisation for the Taishan reactors will be delivered by the NNSA following a control process similar to the process applicable in France, covering all checks and controls during construction, analysis of start-up test results, and approval of the final safety report. This final safety report must demonstrate proof of compliance with Chinese regulations.

3. SAFETY AND RADIOLOGICAL PROTECTION

3.1 SAFETY POLICY AND IMPLEMENTATION AT EDF GROUP

3.1.1 Definition

Nuclear Safety relates to all technical and organisation provisions made relative to the design, construction, operation, shut-down and decommissioning of nuclear facilities, and transport of radioactive substances, adopted to prevent incidents and accidents or to mitigate their effects (source: ASN France).

3.1.2 EDF Group Policy

On 20/01/2012, the EDF Chairman & CEO approved and signed the “Nuclear Safety Policy” of EDF Group, based on the following conviction:

“At **EDF Group**, we all share the same vision that nuclear safety is the overriding priority in the sustainable use of nuclear energy, recognising that nuclear energy also needs to be efficient, affordable and environmentally friendly. It is an indispensable prerequisite when providing energy to humanity.”

The Nuclear Safety policy of EDF Group can be consulted on this website:
http://activites.edf.com/fichiers/fckeditor/Policy_de_surete_nucleaire_Groupe_EDF.pdf
or

In his letter dated 06/02/2012, the Chairman & CEO of EDF has asked the senior executives and managers to “turn nuclear safety into the key pillar of their engagement and share it with all teams.”
3.1.3 Policy implementation

After having built its own fleet of reactors and thus accumulated a triple experience as designer and architect-assembler, operator and dismantler, EDF made a number of acquisitions in existing and reputable nuclear companies.

Each EDF Group company had previously put in place its own nuclear safety policy and management system in line with their national regulatory context. Beyond strict compliance with national laws and regulations, each company strives for excellence in their activities and has implemented long-term adapted programmes to continuously improve their safety performance; each company leverages its own skills and expertise, and benefits from national and international support.

The aim of EDF Group is therefore to encourage this attitude and reinforce it by making use of all possible synergies within the Group in the framework of its common Nuclear Safety policy.

Continuous improvement in nuclear safety at EDF Group level is built on three pillars, chosen and implemented in a manner consistent with international guidelines (IAEA SF-1 and GS-R-3, INSAG 4 on safety culture, INSAG 13 on safety management, INSAG 18 on change management) and best practices.

Due to the special nature of nuclear safety, EDF has had in place for many years a dedicated, highly-skilled team in charge of enforcing the safety policy across the Group, headed by the Inspector General for Nuclear Safety and Radiation Protection (GINSR), directly reporting to the CEO of EDF Group, and to the Nuclear Safety Council (CSN).

Following the international development of nuclear activities, EDF is progressively extending the scope and the roles of the Inspector General and of the CSN, now opened to representatives from EDF Energy. Today, the GINSR Inspector carries out safety assessments and controls across the Group. With his team of senior experts, he verifies that safety practices remain effective and...
consistent with regulatory requirements and public expectations, as well as to the company’s policy. He verifies that safety behaviours and culture are consistent all over the Group. He alerts corporate executives as necessary and submits recommendations. He produces an annual report submitted to the French Nuclear Safety Authority and publicly available (on web site). His recommendations are used as appropriate by the CEO and sent annually to the relevant corporate executives.

For issues apart from nuclear safety, EDF has a “Group Audit” function in place with authority on internal audits based on all resources available with the Group, EDF SA and its subsidiaries.

The governance of each nuclear company is adapted to the Group’s stake ownership and to the national regulatory context. Via its representation on various boards and committees, EDF has access to the necessary information and analyses, complemented by the assessments of the GINSR, and can therefore require or promote safety improvements.

At EDF SA, the overall compliance with regulations and the Group safety policy and the safety management are assessed at each level of the organisation (company, business line, generation site).

- At company level, the Nuclear Safety Council, of which the GINSR is the secretary, is composed of all corporate executives of the parent company and reports directly to the EDF Chairman.
- At Division level, the Operational Nuclear Safety Committee (CSNE) reports to the directors of the Nuclear Generation Division (DPN). Similarly, the Design Safety Review Committee (CSNC) reports to the directors of Nuclear Engineering Division.
- At power plant level, a Safety Technical Committee (GTS) reports to the plant director. An independent control line of safety engineers and experts continuously assess the safety of facilities and organisation, and reports to this GTS committee.

In November and December 2014, the EDF SA corporate functions were inspected under an Operational Safety Review (Corporate OSART) conducted by an International Atomic Energy Agency (IAEA) team. EDF SA thereby demonstrated its determination for transparency, via a benchmarking exercise against best international practices and IAEA standards. The OSART assessment was a premiere within the EDF Group and the second worldwide premiere following the Corporate OSART of CEZ in the Czech Republic conducted in 2013.

The IAEA Corporate OSART findings were presented at a press conference held on 9 December 2014. The IAEA OSART experts did not detect any discrepancy against international standards at EDF SA and therefore did not issue any recommendation. Seven suggestions and 17 best practices were issued. The Corporate OSART report highlighted in particular the following points of good performance:

- Training of new hires
- Resources available for crisis management
- Solid ties with stakeholders and experts via the outreach programmes at local, national and international levels
- Bolstered monitoring system via the Inspection Générale and Inspection Nucléaire departments

The operational safety of EDF nuclear facilities was thus acknowledged by IAEA, and EDF SA was encouraged to pursue its ongoing efforts.

At EDF Energy Nuclear Generation Group Ltd, the board is responsible for the management monitoring of EDF Energy Nuclear Generation, the business unit which holds the Nuclear Site License. Several representatives of EDF (senior executives of Generation and Engineering Division EDF) are members of the Group board. Inside EDF Energy Nuclear Generation, Nuclear Safety
Committees are constituted in compliance with the Nuclear Site Licenses. These Committees are consulted regularly for their consideration and advice on matters of nuclear safety. EDF IGSNR have observed the Committees in operation.

At CENG, each nuclear site has a Nuclear Safety Review Board (NSRB) that monitors the management of safety. Various external experts participate in the NSRB alongside representatives of the site and of Exelon corporate departments.

The NSRB meets three times a year at each site. The Chief Nuclear Officer of CENG reports to the Board of Directors on the main items related to the operation and safety of the five reactors, the operating performance and events, and to the findings from NRC inspections or INPO assessments.

TNPJVC published its safety policy in 2011, containing guidelines on responsibility, management, control and independent assessment that are consistent with EDF Group’s Safety Policy. Some sixty EDF expatriate employees work in various departments of TNPJVC: safety/quality, engineering, procurement, construction, testing, operation and maintenance, finance, audit.

3.2 INCIDENTS AND EVENTS

3.2.1 Policy

The most harmful consequences arising from nuclear facilities originate from the loss of control over a nuclear reactor core cooling, the nuclear chain reaction, or uncontrolled radioactive discharges, which constitute the three key safety functions that are secured and verified on a permanent basis.

EDF Group aims to reduce the likelihood of such losses of control to the lowest possible level, and takes all necessary measures in order to:

- Prevent the occurrence of failures or abnormal conditions that could lead to such a loss of control;
- Prevent the escalation of any such failures or abnormal conditions that do occur and mitigate their external consequences;
- Prevent the loss of confinement or the discharge of radioactive substances outside the facilities.

3.2.2 Implementation principles

The primary means of preventing and mitigating the consequences of accidents is the concept of ‘in-depth defence’. In-depth defence is implemented primarily through the combination of a number of consecutive and independent levels of protection: some of them can replace others in case of failure and would prevent any harm caused to people or to the environment.

In line with this fundamental IAEA principle and with local regulations, EDF Group companies have all put in place local processes to detect\(^7\) and prevent such failures/events\(^8\) of any origin (human or technical), in order to mitigate them and leverage experience feedback to prevent their reoccurrence. These processes consist of:

- Identifying conditions that have or could have an adverse effect on the performance of equipment, programmes, or organisations
- Ensuring necessary immediate actions are implemented to place plant/situation in a safe and stable condition

\(^7\) The detection and self-report of errors by their authors are promoted and recognised as a positive contribution to safety; on the contrary, the fact of hiding an error is a fault in the safety culture and is subject to disciplinary sanctions

\(^8\) In safety culture terminology, an “event” does not necessarily have a direct consequence on equipment or a direct impact on the facilities. It can simply involve weakened defence lines, including organisational, with no material consequence.
• Reporting the condition to a technical supervisor or to the control-room, as appropriate, including immediate corrective actions already taken
• Promptly initiating an in-depth analysis, together with sufficient information so that the condition can be properly evaluated for operability and compliance with safety rules.

The conditions and limits necessary for safe operation of the facilities are described in the Operating Technical Specifications (Spécifications Techniques d’Exploitation (STE)), or the licence conditions, validated by the national safety authority. These specifications may be more or less detailed, depending on the way risk analysis may be used in real time and in conjunction. In France, STEs specify in detail the list of actions to be implemented in case of anomaly or failure on safety-sensitive equipment components; probabilistic risk analysis methods are not used as a complement to real-time analysis. Conversely, probabilistic risk analysis is used more commonly in the USA, for instance in case of simple or combined anomalies of safety-sensitive equipment. Both approaches are internationally recognised as effective.

The incident or accident management procedures used to restore the facilities in safe conditions have been widely improved everywhere since the accident of Three Miles Island which highlighted the difficulty of making a correct diagnosis of normal status and inferring the appropriate corrective actions. An extensive international experience feedback programme has been implemented. Several major milestones have been achieved and currently all French procedures are status-oriented procedures, used by both operators and safety engineers. These evolutions are closely framed by licensing and regulatory requirements, and validated by safety authorities in cooperation with nuclear operators and after numerous simulator qualification tests. All operators and operational managers are regularly trained on full-scale simulators to be well prepared to face any accident situation. In some training sessions, severe accidents caused by multiple failures beyond design-basis are simulated to prepare the operational staff to face highly complex situations.

3.2.3 EDF SA

In France, based on its continuous safety assessment of its fleet and its experience feedback programme, EDF SA leverages a series of safety indicators and assessment tools to select and monitor the best improvement programmes or projects launched to correct weaknesses and seek world-class excellence.

The indicators are derived from best international practices in the nuclear power industry, which enables EDF SA to benchmark itself regularly against the best-in-class global operators.

In an effort to structure all improvement measures implemented at EDF SA level and in each power plant, EDF SA established the so-called “Generation 2020” project in 2011, based on a analysis of the current and future context: safety shall progress continuously, significant capital investments are to be made in the next 15 years, the renewal of the staff with the retirement of the generation who pioneering nuclear power.

The Generation 2020 project is intended to structure the measures to be implemented according to three key priorities:

• Securing the reliability of equipment: handle it with the utmost care,
• Securing the reliability of organisations: anticipate precisely the preparation of activities,
• Constantly reinforcing professional skills: challenge professionalism constantly to do the right thing from the onset.

The project was broadly disseminating across all DPN team with a top-down approach. The DPN division sets the course, the business units define and formalise their own road-map for 2015 based on a site-wide project.

9 The required response was determined based on probabilistic risk assessments when the STEs were established
10 E.g. the indicators used by EDF SA are also used by WANO and INPO.
3.2.4 **EDF Energy**

Specifically for incidents and events, **EDF Energy** also undertakes the following processes:

- The continuous improvement model which is based on the INPO excellence model and is enshrined in company processes. Issues and emerging trends are identified and analyzed; solution options are studied, prioritised and implemented through business processes.

- The Corrective Action Programme (CAP) which is used to identify, document, evaluate, and trend undesirable conditions (problems) and to take actions to correct problems and their causes. The aim is to proactively identify sub standard conditions and practices at a local, low consequence level and take positive action to prevent more significant consequence events arising and adverse trends developing.

- The Operating Experience processes cover the reviewing, screening and disseminating of internal and external incident reports and experience feedback (nuclear sector and high hazard industries) for applicability of lessons learned to specific EDF Energy Generation facilities.

For more details on EDF Energy processes and systems for incidents and events, see *"Our journey towards zero harm"*11.

3.3 **Unplanned outages**

3.3.1 **Policy**

In the context of unplanned outages, special attention is afforded to reactor tripping events. A significant number of automatic reactor trips will generate pressure and temperature transients on components and structures that may be detrimental to the long term operation of the plant, requiring additional inspections and maintenance; unplanned shutdowns for maintenance or repair may increase worker radiation doses and volumes of liquid and gaseous wastes. Consequently EDF Group is committed to their reduction and eventual elimination in order to promote Nuclear Safety, Radiation Protection and Public Safety performance.

3.3.2 **Implementation principles**

EDF Group’s companies have adopted international best practices in this field. The international standards and performance criteria defined by INPO (Institute of Nuclear Power Operations) and WANO (World Association of Nuclear Operators) constitute the fundamentals used by EDF.

EDF however complies with different practices recommended by nuclear safety authorities and national requirements: in some countries reactor operators are required to anticipate the automatic protection (this is the case in USA and UK) by undertaking a “manual scram”; in others in France the operator is required to let automatic protections to do their job. The various approaches will influence the indicators differently.

Each company regularly defines and implements specific action plans depending on its own strengths and weaknesses highlighted during their safety reviews.

3.3.3 **EDF SA**

EDF SA’s current action plans are focused on three priorities, in line with the above-mentioned Generation 2020 programme:

- Improve reliability of organisations: the situations most likely to cause a scram are identified in activity planning, detailed risk assessments are carried out and responses put in place.
- Improve human performance: working methods intended to counter the previously mentioned risk situations are part and parcel of the practices promoted in the EDF programme “Improve Human Performance”.
- Improve the reliability of equipment: every material failure at the origin of a scram is analysed, corrected and incorporated into the continuous improvement loop of the AP 913 project.

3.3.4 EDF Energy

At EDF Energy, in accordance with worldwide industry accepted best practices, the implementation of a rigorous process-based approach to operational plant management is considered to be the most effective and robust means to ensure sustainably high safety and environmental performance, including avoidance of unplanned shutdowns. Some of the most important processes are:

- Work Management and outage management
- Equipment Reliability
- Organisational Learning

EDF Energy Generation has implemented Work Management best practices in line with the INPO (Institute of Nuclear Power Operations) guideline AP-928. This process provides assurance that nuclear safety-related “Defence in Depth” equipment is maintained during routine and emergent maintenance activities. This means that our operators always have control over the defence with multiple safety systems which will, through carefully planned release schedules, have high availability factors, both in normal operation and outage execution. Achievements in 2014 on outage management included an excellent safety record and the best-ever performance to date with respect to over-runs at 5.7%. Adoption of the EDF SA long-term outage planning process is providing enhanced clarity with respect to the future outage programmes at each site. The aim of the outage management programme in 2015 is to significantly reduce outage durations from the existing outage programmes that are scheduled to run between 2015 and 2019, and to maintain outage durations at this lower threshold going forward. In addition the outage over-run target for 2015 has been set at 3% to continue to deliver the best-ever performance in this area.

EDF Energy is implementing Equipment Reliability best practices in line with the INPO guideline AP-913. A new methodology (aligned with INPO) for calculating Equipment Reliability (ER) was first introduced in 2013, and more recently the latest version for 2015 is fully aligned with the INPO V10 release allowing international benchmarking of the fleet performance. Plans for 2015 include: improving systems safety and reliability performance through defect reduction focussed on critical components and single point vulnerabilities; developing performance monitoring; fostering cross-functional work to deliver safety and reliability improvements; focussing together on the most important plant and equipment, and managing performance for lifetime. The impact of this work will improve the ER Index score across the fleet, which will make a decisive contribution to reducing the annual unplanned capability loss factor in 2015.

EDF Energy is committed to improving Organisational Learning which encompasses the nuclear professionalism upskilling programme that includes both human performance and nuclear safety culture components. This programme focuses on minimising the frequency and consequences of human errors through training, effective use of human error prevention tools, effective supervision, performance coaching, and the identification and reduction of organisational weaknesses through investigations into events, incidents, near-misses and performance trending of sub-standard conditions. In the Behaviours for Success programme in 2014, EDF Energy continued to improve leadership behaviours at all levels across the organisation, which in turn supported the delivery of good generation output results and excellent safety results. Plans for 2015 include the further
embedding of the 4Is (Inspiration, Inclusion, Integrity, Impact) model focussed on adding value through individual and team behaviours. The 4Is concepts will continue to be applied to how we develop our leaders, conduct appraisals, build personal development plans and coach in the field through Nuclear Professionalism enhancement.

3.4 NUCLEAR SAFETY ASSESSMENTS

3.4.1 Definition

A “nuclear safety assessment” is a general process used widely in the nuclear industry to identify and to evaluate the efficiency and effectiveness of all provisions implemented for nuclear safety; it is used in numerous situations, from design to decommissioning, through the management of operations and many other activities. The assessed items can address safety issues, means and provisions for impact prevention and mitigation, or provisions for control and monitoring. A nuclear safety assessment frequently includes a risk assessment of various hazards generated by the facility/activity itself or by external hazards. These two notions of safety assessment and risk assessment are closely linked and it is difficult to present them separately.

3.4.2 Policy

As noted in the section about the Group’s nuclear safety policy, EDF Group companies operating nuclear power plants are individually responsible for the safety of their facilities and for any impact on their personnel and the public. Their goal is to reduce the risks arising from normal operation or from any nuclear accident due to internal or external causes (e.g. floods, earthquakes, storms, climate change, fires, loss of coolant, power failures...) to an acceptable level in line with international standards and corporate expectations. The Group promotes the use of safety assessment and risk analyses in the broadest possible range of situations. The Nuclear Engineering Division is fully involved in this process.

3.4.3 Routine safety assessments

In day-to-day operation, each EDF Group nuclear company has put in place a safety assessment process; it is a key point for efficient organisation and management (inspired by GS-R-3 and INSAG 13 of IAEA) , as well as one of the fundamentals of a good safety culture (inspired by INSAG 4).

As nuclear safety is the result of all measures taken to protect people and the environment against the release of radioactive material, the principle of successive barriers is applied for this purpose: fuel cladding, reactor cooling circuit and containment vessel. To prevent any failure of the barriers or mitigate the consequences, the three following safety functions must be maintained continuously: control of core reactivity, control of fuel cooling and control of the containment of radioactive materials.

The day-to-day safety analysis during operation consists of regular monitoring of the efficiency of these barriers and safety functions; it combines self-assessment by operators, internal control by operation supervisors and independent verification by a safety-dedicated function (safety engineers and safety-quality auditors). The process is applied in every domain of work (operation, maintenance, periodic testing). Systematic benchmarking of the results from verification safety tests with those carried out by other plant operators is a very effective way to maintain a high level of safety as well as a good way to sustain the right challenging attitude and identify any malfunctions. These safety assessments play a dominant role during daily meetings where operational managers and engineers reiterate the safety requirements and ensure compliance.
3.4.4 Day-to-day implementation at EDF SA

At **EDF SA**, several safety management tools have been developed and generally extended over several years to facilitate and encourage managers and workers to carry out relevant safety assessments and prevent mistakes. These tools include:

- **Risk analysis**: identifying the plausible scenarios which might lead to a wrong result or degradation of the plant conditions, and setting up the appropriate measures to prevent and manage the identified risks.
- **Self-assessment**: a structured and objective comparison performed by an entity (work team or department) in order to benchmark its working methods against defined requirements and identify potential improvements.
- **Self-diagnosis**: a reciprocal questioning process between engineers who carry out complementary tasks (for developing individual and team effectiveness).
- **Because the right arbitration between nuclear safety and other performance factors is an essential issue, the Observatories on Safety, Radioprotection, Availability & Environment (OSRDE) analyse in each power plant the quality of the decision-making process and propose actions to improve it and guarantee compliance with rules in any circumstances.**
- **External inspections and audits are performed by international teams of organisations such as the IAEA (with its OSART missions) and WANO (Peer-Reviews and Follow-ups) (see below).**

3.4.5 Day-to-day implementation at EDF Energy

At **EDF Energy**, the company’s vision and associated strategic objectives are implemented through a defined organisational structure and 36 interlocking processes. For each process there is an identified champion in the business who owns the process definition and documentation and is charged with its continuous improvement. The whole is underpinned by the values, standards and expectations that should inform and permeate all activities throughout the company.

Based on these standards, the processes include all the elements necessary to manage and control nuclear power plants safely and efficiently. Alongside the processes for specific technical activities there are processes for securing sufficient suitably qualified and experienced staff (including training), for improving human performance and nuclear safety culture, for implementing and monitoring governance procedures, for ensuring adherence to regulations, for securing independent assessment of our activities, for investigating departures from expected plant and personnel behaviour and preventing their recurrence (CAP – the Corrective Action Programme) and for driving improvement in all aspects of performance.
As you would expect for a high-hazard industry there is a particular emphasis on oversight to monitor performance and conformity to both the internal standards and external regulations. EDF Energy operates a multi-layer model with increasingly independent oversight being exercised through:

- Management accountability - the exercise of leadership;
- In-process oversight through self checking, peer checking and self assessment as part of its internal controls process;
- Functional oversight – review and audit by company experts; these include fleet managers and Delivery Teams, who use the Governance, Oversight, Support and Perform (GOSP) model;
- Independent internal oversight from its Safety and Regulation Division who reports to the Board independently of the operating arm of the company, Quality Department, Internal Audit and IGSN.
- External oversight from its Nuclear Safety Committees and the Training Standards and Accreditation Boards with their external members, from peer evaluations by teams from other utilities and WANO/INPO, from standards accreditation bodies, e.g. Lloyds Register Quality Assurance, and from the Government’s Office for Nuclear Regulation.

Specifically for safety assessments at EDF Energy, as part of its adequate arrangements to comply with nuclear site licence requirements, there are the following processes:

- The Maintain Design Integrity process ensures that the design intent is met and that, where changes are made to the design, this is done in a controlled manner
- The Modification Process (nuclear site licence condition 22) is used to control changes to the plant and/or safety case against deterministic and probabilistic nuclear safety principles.
- The Technical Governance process ensures that appropriate engineering policies, codes and standards are provided and applied.
- The Periodic Safety Review (nuclear site licence condition 15) process is a periodic holistic review of the condition of the plant and of any changes to standards.

For more information about processes and systems at EDF Energy, please consult the on-line document “Our journey towards zero harm”.

3.4.6 Overall safety assessments

At the highest management levels of organisations (power plants and companies), regular assessment of the organisation’s efficiency and management is a process developed and promoted across EDF Group, while leveraging support from the major international institutions.

3.4.7 Overall safety assessments at EDF SA

At EDF SA, an annual safety performance review is carried out by the plant (or engineering unit) manager, leading to an annual safety report presenting the safety status of the plant (or engineering unit) and containing:

- A diagnosis of the management,
- A detailed analysis based on the safety review results, main indicators, main safety events of operations (regardless of the significance level), and technical status of the facilities,
- The safety action plan.

Some elements are used to prepare the safety section of the published annual report which is presented to the Local Information Commission and broadly disseminated.
The Overall Excellence Assessment process (OEA) carried out by the Nuclear Inspection Department at DPN is an EDF-specific process that was put in place over 20 years ago, and has been continuously improved since then. Its aim is to assess the level of nuclear safety, radioprotection and environmental safety based on a comparison between actual plant performance and the reference guidelines established by the DPN division, and to issue recommendations to the management line in order to further improve the safety level. An OEA covers the following areas: general housekeeping, operation, maintenance, local engineering, technical support, radiological protection, fire protection, environment and chemistry, and safety management, plus decommissioning management if appropriate.

All of these processes have been extended in depth and breadth to help the DPN division define priority orientations for constantly enhancing nuclear safety management and improving the overall performance of the fleet.

3.4.8 Overall safety assessments at EDF Energy

At EDF Energy, performance on nuclear safety, radiological protection and operations is reported monthly to the Safety & Oversight and the Operations Performance Delivery teams (the key governance bodies within Generation), and to the Generation Executive Team and the Licensee Board. In addition, quarterly reports on the safety status of the plant and processes as assessed through results, analysis, insights and oversight are submitted to the Licensee Board and the EDF Energy Nuclear Generation Group Ltd Board.

EDF Energy also undertakes internal self-assessments of all of its 36 company processes annually as part of the Internal Controls process. In addition, self-assessments are conducted on a risk-informed basis across several other processes to ensure that gaps to excellence are identified and actions implemented to ensure continuous improvement of performance. In 2014 a revised outage self-assessment programme was developed with a cross-functional team taking part in a one-week in-depth review of pre-outage readiness. This “cold eye review” was formalised into our outage preparation arrangements and six of these assessments will take place in 2015 ahead of each major planned outage.

External assessments are undertaken regularly by WANO and lessons learned are also taken on board through industry benchmarking.

3.4.9 Contribution to international organisations

The involvement of engineers and managers from EDF Group nuclear companies in international organisations is a valuable way to learn more in terms of safety management and more broadly to develop their open-mindedness to the best practices in the industry.

One of the paths to international exchanges is training: several dozens of EDF managers participated in 2011 in seminars organised by the INPO Training Academy and in WNA University Sessions.

EDF’s contribution to the WANO Peer Reviews and Technical Support Missions (TSM) involved nearly 100 managers in 2011. More than 120 others were also involved in WANO technical seminars. The Group aims to involve more and more staff members in international actions, beyond the permanent secondment of 25 engineers and managers at WANO and 3 at INPO, EPRI and IAEA. These participations allow for better leveraging the experience feedback and sharing of the reports published by these organisations.

At EDF SA, the results from external safety assessments are incorporated into the management loop, and external assessments take place nearly every year at all sites:

- a WANO peer-review takes place every 4 years on each EDF nuclear site in France,
- an IAEA OSART takes place each year at one of EDF’s 19 power plants,
and every 4 years, each power plant undergoes an Overall Excellence Assessment carried out (for the portion related to nuclear safety, radiation protection and environment) by the Nuclear Inspectorate Department of the Nuclear Generation Division (DPN).

This means that each plant is subjected nearly every year to an external safety assessment which provides an external vision and a set of recommendations fuelled by international experience.

At EDF Energy, WANO Peer Reviews are held at each of its nuclear power plants on a 3 (max 4) year frequency with an interim follow-up visit to review progress. The Company therefore typically receives 2 or 3 peer reviews per year with a similar number of follow-up visits. Corporate peer reviews are also held periodically.

Each peer review has two primary outputs:

- A report which identifies areas for improvements (AFIs) which describe gaps between current performance and excellence. These are supported by factual evidence and an analysis of the causes which underlie performance gaps.
- Since 2010, a separate report which reviews station progress in addressing WANO Significant Operating Experience Reports (SOERs) recommendations.

During follow up visits, WANO assesses progress made by plants in addressing AFIs identified during the previous Peer Review.

In conjunction with WANO, INPO and IAEA, EDF Energy also provides support to, and is supported by, technical support missions, self assessments, operating experience feedback, benchmarking, workshops and seminars, performance indicators and secondments.

Seven workstreams have been established to address the AFIs observed by WANO in the 2012 Corporate Peer Review of EDF Energy. These are: organisation and personal behaviours; governance, strategy and business planning; independent/external oversight; functional oversight; significant operating experience reports; loss reduction and the equipment reliability programme.

The EDF Group Nuclear Engineering Division (DIN) provides support to EDF SA and EDF Group in a number of areas, in particular:

- Expertise and design of the new generation of reactors, including technical progress in safety and environment areas (studies on Generation 3 and Generation 4)
- Construction of new plants and new projects; e.g. EDF has put in place a dedicated organisation to leverage experience and benefit from the consistency between all EPR projects (Finland with AREVA, in France, UK and China), including relationships with safety authorities concerned by these projects, and also experience gained during construction and initial commissioning tests.
- Support to existing fleets in operation whenever needed (e.g. to find and implement solutions when failures occur or to replace main components in the case of lifespan extension) including relevant relationships with safety authorities.
- Assessment and review of safety within periodic 10-year safety reassessments or through feedback generated by significant events and accidents, including updated assessments of natural risks (e.g. 400 engineers have been involved in safety assessments and reinforcement studies following the Fukushima accident)
- Decommissioning studies (within the licensing process and during actual dismantling operations).

3.5 Risk Assessment

3.5.1 Policy

The nuclear safety case on reactors includes at the minimum risk assessments of:
Nuclear Safety: Our Overriding Priority

- Plant-based intrinsic faults, e.g. loss of coolant, loss of power...
- Internal hazards e.g. steam pipe rupture, fire...
- External hazards, e.g. climate conditions, flooding, earthquakes...

There is a legal requirement in general regulations for risks to be ALARP (“As Low As Reasonably Practicable”). Some countries impose a maximum risk level (e.g. probability of core meltdown). The responsibility to conduct thorough and in-depth risk analyses is fully recognised by the Group which uses the process as a fundamental tool to continuously reinforce the safety standards in its nuclear power plants.

3.5.2 Implementation

Risk management, a full-fledged operating process

For many years EDF Group has pursued a policy of managing its operational, financial and organisational risks. In 2003, the Group decided to implement an overall process for managing and controlling its risks and reinforcing existing plans, in particular by creating the corporate Risk Management Division (RMD, Direction de Contrôle des Risques Groupe or DCRG). The objectives of the management and control policy are to identify and rank the risks in all domains to gain increasingly firm control over them, under the responsibility of operational management; this policy enables corporate officers, directors and the Group’s governance bodies to have a consolidated and regularly updated view of the major risks and their level of control. DCRG, jointly with the Internal Audit Department, implements an annual programme of audits on a large range of issues, linked to the previous risk ranking.

That approach is put in place in each division and company of the Group. At EDF SA Nuclear Generation Division, the approach is applied to nearly 12 all processes and projects. Each risk is identified and assessed, and relevant mitigation actions are undertaken.

Periodic safety assessment in nuclear plants including risk analysis

The nuclear power plants were designed and built to the best state-of-the-art technologies, and based on national and international standards and guidelines; at the time of commissioning, a Safety Report was a single document summarising all requirements and provisions included in the safety case. The power plants are expected to operate for a number of decades, during which these requirements have changed and will change. In addition, there are numerous changes made to facilities and procedures at each plant, each of which is separately documented even if it only constitutes a minor change in the safety case.

The entire safety case, including risk assessments of plant-based, internal and external hazards, is therefore reviewed at regular intervals against current national and international standards which set industry best practices, e.g. IAEA. The review also encompasses operating experience gained within the company or the entire nuclear industry (e.g. following TMI, Chernobyl and Fukushima) and through global high-hazard industry events. The review process, which is referred to as a Periodic Safety Review (PSR), is carried out at intervals of approximately 10 years under the oversight of safety authorities. These reviews may identify shortfalls with respect to currently applicable guidelines. All reasonably practicable improvements identified by the review are implemented to bring the plants in line with the current guidelines. In the UK, the review is submitted to Office for Nuclear Regulation (ONR) for their consideration and, if appropriate, agreement to any proposed changes to the Safety Report. In France, the safety improvement scope targeted by the ASN is previously established and is the basis for the ASN to deliver its opinion and the eventual complementary requirements in order to support the operation of the unit for a further 10 years. This

12 17 among 22 processes and projects of DPN
13 In France and UK
process enables the oldest plants to be compliant with or close to the current guidelines applied to the most recent reactors.

3.6 Emergency Preparedness

Within the general framework of risk management, EDF-DCRG (corporate Risk Management Division) is specifically in charge of emergency preparedness and crisis management organisation at Group level, while each nuclear division and company in the Group remains responsible for its own internal crisis organisation. Drills are organised regularly (in relation or not with safety authorities) and provide an opportunity for benchmarking and experience sharing between the companies.

In France, in the event of an accident, an emergency organisation is in place to limit impacts on the environment and populations. To ensure both the safety of the facilities and the protection of populations, the system relies on two closely coordinated plans, designed for both local and national use. These are the Internal Emergency Plan (Plan d’Urgence Interne, or “PUI”), prepared by EDF and the Special Intervention Plan (Plan Particulier d’Intervention, or “PPI”), prepared by French prefectures in collaboration with the French state and EDF. These plans take into account all possible events (internal and external events, malicious acts, etc). The efficiency and relevance of the system for warning, informing and protecting populations is regularly tested through accident simulation exercises, which make it possible not only to ensure the correct operation of the crisis plan, but also to improve it, in particular, by clarifying roles and validating all of the required material and human resources (decision-making process, centralised technical support, communication capacity, anticipation ability, etc).

Each year, approximately 100 emergency exercises are conducted over the entire French nuclear fleet, i.e. approximately one every three days. Approximately 10 drills take place at national level, under the oversight of the ASN and involve EDF and the public authorities, in particular the prefectures. As one of the lessons learned after the first drills, stable iodine tablets have been pre-distributed in a perimeter of approximately 10 kilometres in order to better protect children against exposure to radioactive iodine in case of accident. As a lesson learned from the Fukushima accident, national assistance systems were reinforced with additional technical and human resources planned in situ to respond to a crisis.

Figure 8: Crisis preparedness drill

14 Examples of events: internal -> Electrical losses, fire, industrial safety, etc. External events -> plane crash, earthquakes, storms, floods, malicious acts, etc.
At EDF Energy, Emergency Plans are practiced regularly at nuclear fleet level. Within Nuclear Generation, each shift is exercised at least once per year, and one in-depth exercise is required to demonstrate to ONR the adequacy of the on-site emergency arrangements at each power station. These 'Level 1' exercises are witnessed by the ONR and focus on the actions of the operator. Emergency services are invited to participate to provide a mutual learning opportunity and to add realism to the on-site actions.

Level 2 and 3 exercises are aimed at the operation and testing of the off-site emergency plans. Level 2 exercises primarily test the local off-site plan for each station every three years. These exercises enable those agencies with a responsibility in the response to exercise and review their arrangements.

Annually one of the national programme of Level 2 exercises is selected for the purposes of testing the national level response plan. In addition to the Level 2 activities, this involves the setting up of the Nuclear Emergency Briefing Room in Whitehall, or the Scottish Government Emergency Room.

Regulatory exercises are also required to satisfy the nuclear security regulations and the transport of radioactive material.

In addition to the regulatory exercises, sites have tested various aspects of the emergency plans during approximately 100 shift exercise and training drills. The lessons from all exercises have been shared across the fleet and used in revising emergency plans and future exercise programme.

During 2012 and 2013, some additional key activities in the emergency preparedness area included:

- Provision of further detailed emergency arrangements to support beyond design-base accidents and integration of the post Fukushima recommendations. Proof of concept exercises have been held to test the new extended arrangements, including deployment of back up equipment.
- Increased focus on the alignment of the safety and security response arrangements for the industry and the fleet.
- National forums such as Nuclear Emergency Planning Liaison Group (NEPLG) and Nuclear Emergency Arrangements Forum (NEAF) have made significant changes to structure and governance. EDF Energy has consistently attended the Department of Energy and Climate Change’s (DECC) new National Strategic Framework; this is the governance framework for the national emergency response capability.
- Review by International Atomic Energy Agency (IAEA) and ONR on increased extendibility planning and potential increases in Detailed Emergency Planning Zone (DEPZ’s).
- Following the decision to include emergency preparedness in Peer Reviews there has been increased focus on World Association of Nuclear Operators (WANO) internal and external activities.

3.7 Adaptation to Climate Change

As a part of its Sustainable Development Policy, an overall climate change adaptation strategy was adopted by EDF Group in 2010. The strategy aims to compile in a consistent way all the works, actions, studies and research to be implemented across the entire Group in order to identify all activities impacted by climate change, and all means and processes conducive to reinforcing our robustness and resilience to extreme climatic phenomena. We recognise that we have to adapt our existing industrial facilities and networks to ensure they will remain safe and operational over several decades throughout their life cycle. This strategy includes all studies and modifications done or to be done on nuclear facilities related to the major risk sensitivities, such as:

- robustness of our power supplies, based on lessons from experience after the storms of 1999 and the Fukushima accident,
- robustness of our plants during heat waves: after hot summers in 2003 and 2006, a specific programme of modifications called “Hot Conditions” was launched at all French power plants, with a short-term plan already implemented, and a medium/long term plan integrated into periodic safety reviews,

- robustness against flooding: after the flooding of Blayais nuclear site in 1999, a safety review was launched for all nuclear facilities, taking into account higher water levels and all combinations of effects; some protections have been raised at French sites (both riverside and seaside sites); this programme pre-empted the post-Fukushima review and will merge with it,

- management of water resources: EDF laboratories have been working closely with climate and meteorology experts to better forecast the availability of water resources for our hydropower and fossil-fuel plants (including nuclear plants). Special organisations are already in place to manage water and better coordinate all water users during low-water periods (in order to prioritise low-flow augmentation or reduce power generation during critical periods). Studies are ongoing to find less sensitive cooling systems and upgrade the regulations on heat discharges to adapt them to observed and future climate conditions.

Figure 9: Nuclear Safety, our overriding priority
3.8 Lessons learned from the Fukushima accident

Following the Fukushima accident, the associations representing the nuclear safety authorities (IAEA, WENRA, ENSREG ...) asked the operators to test the capacity of their reactors to cope with extreme events such as Maximum Credible Accidents (MCA). Since 2011, each nuclear operator has conducted an assessment of its reactors to assess their robustness against the kinds of risk highlighted by the Fukushima accident (external hazards including earthquakes and floods).

The method followed by each of the operators is determined by the requirements set by the relevant regulator of the country (France ASN, UK ONR, U.S. NRC). The actions taken thus depend on the requirements and improvements required by these assessments.

In the context of transparency in the nuclear industry, the improvements are described in documents or Web-sites accessible to the general public:

- “EDF Energy Nuclear Generation : Our journey towards zero harm” for UK\(^\text{15}\);
- “Renforcement de la sûreté : EDF s’engage” for France;

EDF SA:

In 2011 at the request of the ASN, EDF conducted a series of stress tests (Évaluations complémentaires de sûreté, or ECS) involving a meticulous and comprehensive review of all safety systems and their robustness against extreme events. Based on the findings of these stress tests, the ASN confirmed the satisfactory safety status of the EDF SA nuclear power facilities and recognized their robustness against extreme events.

The French Nuclear Safety Authority nevertheless required EDF to further upgrade the safety level of its power plants and their ability to withstand even the most extreme situations, and to complete this work within the shortest possible time.

EDF defined and initiated an upgrading programme in all of its power plants as early as 2011. This programme is described in detail in the publicly available document entitled “Renforcement de la sûreté: EDF s’engage” and is scheduled to continue from 2015 up to 2030.

EDF Energy:

It is recognised that there are certain extreme fault conditions for which there is no specific design provision - these are termed “beyond design basis” faults. There are also unlikely combinations, or sequences, associated with design basis faults that fall into this category. Such situations have been analysed to confirm that there are large margins available within the design basis fault studies. In particular, it has been shown that there are no “cliff edges” which would result in the fuel safety limits being exceeded in the majority of beyond design basis situations analysed. Therefore even though specific studies have not been carried out for all possible events, scoping studies have shown the plants to be capable of maintaining safe conditions.

It is very difficult to provide detailed instructions to the Reactor Desk Operator covering all of the different extreme situations which could conceivably arise, however unlikely. The types of actions which would be most beneficial in these remote circumstances have nevertheless been considered, and this has resulted in the issue of two sets of additional instructions known as Symptom Based Emergency Response Guidelines (SBERGs) and Severe Accident Guidelines (SAG):

- The SBERGs give advice in a developing fault situation, for which the normal operating instructions are not valid. This advice focuses on the symptoms of the fault rather than on specific failures in any one plant system. The SBERGs supply guidance on the most appropriate actions which would be needed to preserve and reinforce the critical safety functions, such as reactor cooling.

The SAG guidelines advises on the management of the reactor after a severe fault. They focus on actions to establish the critical safety functions and to minimise the release of radioactivity from the core and plant.

The emergency preparedness arrangements at EDF Energy have been extended to include beyond design basis events. The exercises also include practising use of SBERGs and SAGs.

3.9 Radiation Exposure (to workers and the general public)

3.9.1 Definition

Radiation or radiological protection means the protection against ionising radiations, i.e. all rules, procedures and means of prevention and monitoring intended to prevent or mitigate the harmful effects of ionising radiations on individuals, whether directly or indirectly, including harmful impacts on the environment.

3.9.2 Overview on the regulatory context

In Europe, the current legislation (Euratom Directives 96/29) is inspired by the publications of ICRP (International Commission on Radiological Protection), a non-governmental institution establishing radioprotection recommendations based on scientific fundamentals. All national regulations (including the French and British laws) based on the European regulation integrate the following three fundamental principles of Radiation Protection:

- Justification principle: no practice involving a risk of exposure to ionising radiations shall be adopted unless its introduction produces a positive net benefit on populations as a whole (i.e. advantages deriving from the practice shall be greater than disadvantages).
- Optimisation principle: in the words of ICRP, all exposures shall be kept “As Low As Reasonably Achievable (ALARA), economic and social factors being taken into account”. It means that all reasonably practicable measures to reduce radiation exposure shall be taken.
- Principle of individual dose exposure limitation: the dose to the individuals “shall not exceed the limits recommended for the appropriate circumstances”. These limits are chosen and proposed by ICRP for workers and individuals of population to dose levels corresponding to a negligible risk level. French and British legislations have set the same dose limits: 1 mSv per year for the public and 20 mSv per year\(^{16}\) for the workers.

3.9.3 Policy

Despite differences between national regulations, the common approach of the nuclear companies of EDF Group is to ensure, at a minimum, compliance with all applicable regulations, to continuously improve our practices well beyond the requirements, to emulate nuclear industry best practices, and to cooperate with our industrial partners to achieve a common fleet standard which takes into account technical differences among plant technologies.

Each company strives to ensure that any exposure to ionising radiation is kept “as low as reasonably practicable” (ALARP) beyond the requirements, to reduce individual and collective radiation doses and protect any worker, without any distinction between company or subcontractor staff, or any person in the vicinity from exposure exceeding a statutory radiation dose limit.

At EDF SA level, the Council of Nuclear Safety, headed by the Inspector General, includes all corporate officers of the parent company and reports directly to the EDF CEO.

At the EDF SA Division level, the Risk Prevention Committee (CRP) reports to the executive managers of the Nuclear Generation Division (DPN). In each power plant, a Technical Group on

16 More precisely in French regulation: “per period of 12 consecutive months”
Radioprotection and Nuclear Safety (Groupe Technique de Sûreté Radioprotection, or GTSR) reports to the site manager.

In 2012, a new policy was adopted at DPN reasserting the ambition of guaranteeing the health, safety and radioprotection of all EDF’s and subcontractors’ operational staff. Safety and radioprotection are essential components of operational quality, based on the conviction that workplace accidents, over-exposures to radiation and occupational illnesses are avoidable by developing a culture of prevention for all operational parties.

Moreover, regarding environmental protection more specifically, EDF Group adopted in 2009 an overarching Sustainable Development Policy which contains a target of “minimising the impact of our activities on the environment by continuous improvement”, taking into account minimising exposure to the populations.

Compliance with regulations and internal policy, along with nuclear safety management, are thus evaluated at each level of responsibility in the organisation.

3.9.4 Policy implementation measures

In order to reach their goal of continuously reinforcing the radiation protection of workers, the companies have implemented the following measures and processes among other:

- Efficient operation of the facility and all technical systems contributing to the lowest radiation level inside the plant premises (e.g. decontamination phase at the beginning of an outage in PWR plants, monitoring the cleanliness of controlled areas, implementation of protective shields...),
- Specific work preparation when operations are planned in a controlled area, with risk analysis, support and control by specialised staff,
- Specific radiological monitoring instrumentation and personal equipment provided to staff working inside controlled areas,
- Wearing personal dosimeters (possibly complemented with statutory dosimeters depending on local regulations)
- Appropriate alarm procedures for workers, crew supervisors and operating staff,
- Appropriate mandatory training and promotion of best practices (e.g. simulators and on-the-job workshops), for all workers whether company employees or sub-contractors.

Some most recently completed actions or ongoing action plans, aiming to remedy weaknesses and continuously improve the performances, include:

- EDF SA has implemented for some years a specific programme to prevent incidents in hazardous situations (red or orange zone entrance, radiographic tests...) based on a reference standard regularly audited by the Nuclear Inspectorate.
- Under the “Charte de progrès” (Progress Charter) signed with subcontractors and professional organisations, EDF implements an action plan intended to gradually reduce the number of workers exposed to more than 10 mSv per year (vs. 16 mSv/year a few years ago). The 16 mSv/yr pre-alert has thus reduced within 10 years the number of workers receiving a dose higher than 16mSv/yr (92 workers in 2001 down to 2 in 2011) and the dose was further reduced to 14mSv in 2012. Ever since it was implemented several years ago, this pre-alert process has also fostered a dialogue with subcontractors in an effort to find joint solutions to gradually reduce the doses received by these highly specialised workers and to guarantee the same quality of medical monitoring. More generally, under this joint agreement, EDF and its industrial partners afford the same priority and take the same commitment to the improvement of radioprotection and exposure prevention.
EDF has been implementing for several years a specific programme to improve radiological cleanliness: reinforced rules during maintenance operations, additional investments in more sensitive and numerous contamination detectors, benchmarking and rating of the sites. Several power plants have adopted the so-called EVEREST approach (Evolver VERs une Entrée Sans Tenue universelle), consisting in accessing clean zones (contamination <0.4Bq/cm²) with standard work overalls, and wearing a special protection suit in contaminated areas.

The EDF Engineering Division conducts research to determine the best technical choices to reduce doses in future reactors (chemical conditions of reactor coolant, presence of cobalt in steam generator tube alloy and in valve stellite...)

EDF Energy has continued to demonstrate continuous improvement with respect to radiation exposure, primarily due to the design of the AGRs, good PWR dose performance, robust governance arrangements and excellent control of all high dose work performed across the company. Ongoing improvement initiatives include an instrumentation replacement programme, for installed and portable radiation and contamination instrumentation; the new equipment are more sensitive and aligned to best international standards and practices.

EDF Energy has successfully implemented a programme of radiography inspections, as a world best practice, together with its contract radiography company.

EDF Energy has improved radiation worker practices by training workers to a common standard in a training environment using simulated contamination. It has also laid the foundation for effective reinforcement of standards using coaching cards in the Radiation Controlled Areas (RCA). Other initiatives implemented to address worker practices include, the introduction of radiological protection coaching time in the field, RCA “meet and greet” programmes using standard question sheets, a pocket restriction policy (workers only permitted to take items required for the job into the RCA), an empty pocket policy (workers required to check personal items and pocket contents in a Small Article Monitor before exiting the RCA), RCA orientation tours for new starters and RCA Lockouts (prohibiting RCA access to workers for non-compliance with radiological protection rules).

Regarding the minimisation of public dose exposure, the Group companies use a wide array of means and processes, from the design itself to the optimisation and control of effluents generation and treatment, to the monitoring the environment of the plant (including radio-ecological studies):

At the design stage, the fission products contained in the reactor core are segregated from the environment by three successive barriers: the fuel rod cladding, the primary reactor coolant system and the containment enclosure. The tightness of these barriers is strictly controlled during operation; the Technical Specifications for Operation (STEs) define the acceptable limits for certain parameters used to monitor the tightness of these barriers and stipulate measures to be taken if these limits are reached. The tightness of the barriers is a fundamental parameter included in safety assessments carried out as described in § 3.3.

Moreover, several fundamental checks are also conducted within maintenance programmes such as: non-destructive checks of each reloaded fuel assembly, resistance and tightness check of reactor coolant system, periodic tests of robustness and tightness of the containment enclosures (in addition of permanent monitoring during operation) and of all isolation devices.

Because of the normal activation of water or gas used for reactor core cooling, several types of equipment (filters, storage tanks for natural decay of gas radioactivity, evaporators, demineralisers...) are in place to treat continuously the coolant and all liquid or gaseous effluents collected in the plant, for subsequent re-use to the greatest possible extent, and to minimise the residual radioactivity of these effluents before release into the environment. The efficient running of these equipments is strictly controlled.
- All discharge lines (ventilation shafts, drainage pipes of effluent storage reservoirs) are equipped with measurement devices; compliance with limits imposed by regulations and by STEs is strictly controlled. Regardless of their origin (Reactor Building, Fuel Building, Nuclear Auxiliary Building, Turbine hall, laundry etc.), all drainage effluents liable to be radiologically contaminated are always stored and tested before and during release.

- The residual radioactivity in the environment around nuclear sites is closely monitored through frequent and accurate analyses performed on all environmental compartments (terrestrial: grass, milk, farm products, or soils; Aquatic: water (surface and sea), groundwater, sediment, flora and fauna samples, and; Air: aerosols, rainwater, ambient gamma dose rate) from samples collected around the plants. Several arrays of beacons also monitor on an ongoing basis the ambient gamma radiation around the sites, with measurements reported to the control room. All monitoring results are reported to regulatory authorities and to the neighbouring municipal authorities.

- All Group nuclear companies aim to reach the best environmental performance in the industry by reducing the radioactivity released to levels “as low as reasonably achievable”. To this end, they rely on the international experience found within the Group and on contacts with international organisations. The improvements are found in a wide range of domains: operational mode, chemistry, maintenance, efficiency of treatments. Impressive improvements have been made since the first years of operations (reduction by more than ten in general, if not 100); the impact of operation is currently well below regulatory limits and is merging with natural variations of the ambient radioactivity. The good results now achieved (i.e. levels of radioactive releases in France excluding tritium and C14 are today one hundredth of levels in 1984) attest to the efforts made by EDF (more rigorous management, reduction at source, improvement of collection systems) over more than 20 years to optimise discharges and minimise their impact both on the environment and on the public. These efforts are obviously being continued to ensure that the NPPs maintain, or further improve their performance directly related to environmental protection.

3.10 Site Security

3.10.1 Policy

EDF Group recognises the value of its human and technical assets (people, facilities, fuel, information systems and knowledge) that contribute to its business and the need to protect them. Security is about protecting our physical and intellectual property, our staff and the public from any potential or actual event which could adversely affect the confidentiality, integrity or availability of our infrastructure and information as well as the personal security and safety of staff and the public. The risk of theft or non-civil misuse of nuclear fuel is fully taken into consideration by the Group companies, in strict compliance with the requirements of international organisations (IAEA, EURATOM) as complemented by national regulations.

3.10.2 Policy implementation measures

Based on a variety of threats, ranging from malicious behaviour to cyber-criminality and terrorism, there is a series of safety and security measures in place at each of our power plants in addition to the inherent physical security provided by the very robust design of the nuclear reactors and buildings. In compliance with local laws and requirements, access to nuclear power plants is strictly controlled and armed guards or security forces are deployed at all nuclear sites to complement existing security measures.

Confidentiality on the details of these measures is a key point of its effectiveness; readers of this report will understand that it is not possible to describe them in more detail. In each country of operation, the effectiveness of surveillance and protection measures is strictly controlled by dedicated administrations or by the safety authority, and by international inspectors (IAEA,
EURATOM). These security measures are periodically tested, reviewed and reinforced as needed, depending on the threat and on the initial robustness of the protection (e.g. after September 11, 2011).

4. RADIOACTIVE WASTE

4.1 General overview

Just like in any other industry, activities related to the operation and decommissioning of nuclear power plants use raw materials and produce waste, some of which are radioactive by nature due to the power generation process.

EDF Group is legally, industrially and financially liable for the waste and spent fuel we produce from the onset of facility operation, in an extremely strict regulatory environment. Accordingly, EDF implements all necessary measures to ensure the protection of the environment, populations and future generations against ionising radiations linked to the radioactive materials and waste produced by its operational and decommissioned nuclear power plants, all of which are inventoried and treated in compliance with applicable regulations.

The industrial waste approach of EDF Group relies on four key principles:

- Limit the amount of waste produced;
- Sort the waste by type and radioactivity level;
- Condition/package and prepare the waste for long-term management;
- Isolate the waste from humans and from the environment.

4.2 Regulatory context

In France, the regulatory context is as follows:

- Law on Management of Radioactive Materials and Waste (Loi sur la Gestion des matières et des déchets radioactifs) voted on 28 June 2006: it applies to all radioactive substances generated by human activities such as sealed sources used in industrial or medical X-ray systems, waste from military activities, uranium mining residues, as well as radioactive waste from nuclear power generation.

In order to secure technical and industrial options, the law addresses in particular the organisation of long-term financing, leading to the implementation of a National Plan on Management of Radioactive Materials and Waste (PNGMDR in French). Under this Plan, EDF, as well as other producers of radioactive waste, disclose all the data available on the waste they store in their own facilities or sent to ANDRA. The full plan along with an executive summary are published by the ASN on its web site\(^{18}\): information on quantities and management methods for the various radioactive waste categories is therefore available to the public The law further defines a research programme covering all radioactive materials and waste.

The framework of the law confirms EDF’s policy for back-end management of the nuclear fuel cycle.

- Law on Transparency and Nuclear Safety (Loi Transparence et Sécurité Nucléaire) voted on 13 June 2006: it comforts the operational management of EDF’s nuclear fleet by formalising its best practices, particularly as regards safety, transparency and information disclosure.

INB Ordinance of 7 February 2012 setting the general regulations on for “basic nuclear facilities” (“installations nucléaires de base”, or INB): Title VI specifies among other the main management guidelines for radioactive waste generated by these facilities from design up to decommissioning/dismantling. It further specifies that decommissioning should be carried out within the shortest possible time after the final shutdown of the facility without waiting for radioactive decay.

Similarly to radioactive waste, EDF SA remains legally liable for the spent fuel from the moment it leaves the power plant, during its reprocessing and throughout its long-term management process; EDF assumes this responsibility in accordance with guidelines set by public authorities and under their oversight.

Each year, EDF makes provisions for the back-end management of the nuclear fuel cycle which covers the management of spent fuel and the long-term management of radioactive waste.

To calculate the management costs of long-life/intermediate-level and high-level waste (LL-ILW/HLW) from the processing of spent fuel, EDF takes the assumption of deep geological waste storage, pursuant to the law of 28 June 2006 defining deep geological storage as the reference solution.

For long-life, low-level waste (LL-LLW) from the decommissioning of shut down graphite-gas (UNGG) power plants, provisions are established by EDF based on forecasts of waste production and cost assumptions for long-term storage supplied by ANDRA.

The management costs for short-life intermediate-level, low-level and very low-level operational waste (SL-ILW/LLW/VLLW) are recognised and provisioned in the operating budgets, and incorporate storage costs calculated on the basis of contracts signed with ANDRA and with the various carriers in charge of operating the existing Storage Centres.

In the UK, EDF Energy as owner operator and licensee is responsible for ensuring the safe decommissioning of all our power station sites. The company decommissioning policy, strategy and plans have evolved over a number of years and have been developed using multi-attribute decision analysis to ensure that the Best Practicable Environmental Option (BPEO) is being pursued. The strategy and plans take due consideration of the nuclear, industrial and environmental safety implications. The company policy and strategy objective of decommissioning is to return the power station sites to a state suitable for unrestricted alternative use.

It should be emphasised that EDF Energy remains responsible for the decommissioning of our existing power stations. The responsibility for discharging all aspects of the decommissioning works and management of the associated wastes rests with EDF Energy (the decommissioning responsibility does not transfer to the NDA following end of generation). The role of the NDA, as agent for UK Government/Secretary of State, is to administer the Liabilities Management Agreements, including the approval of Nuclear Liabilities Fund (NLF) payments for decommissioning and waste management.

The funding for EDF Energy Generation power station Decommissioning and waste management coming primarily from the Nuclear Liabilities Fund (NLF), but also EDF Energy/EDF Group Accounts.

The decommissioning strategy, policy and plans are subject to regular review. At minimum, a 5 yearly review of the plans is undertaken. In practice, to date, the review/revision has been on a greater frequency. This commitment to review ensures the plans reflect best practice, take advantage of OPEX from ongoing decommissioning projects and remain consistent/aligned with national and international policy, legislation and best practice. The latest submissions and approvals were made during 2013.
4.3 MANAGEMENT OF RADIOACTIVE WASTE

4.3.1 Policy

The radioactive waste management policy is consistent with the Sustainable Development Policy adopted in March 2009 by EDF Group. The Group is committed to taking action to limit the impacts of its facilities and all its activities on the interests protected under the law (safety, public health and hygiene, protection of nature and the environment). EDF Group manages and monitors its impacts using an ISO14001-certified Environmental Management System. The SME affords priority to safety in all hazardous activities, in strict compliance with existing regulations, to the prevention of impacts and to research in operational support for continuous improvement of our environmental performance.

In order to facilitate and monitor the implementation of this policy in all Group companies, EDF has put in place a Sustainable Development Committee which reports to the Corporate Secretary of the Group and acts as the supervisory board on all environmental issues.

4.3.2 Policy implementation

All nuclear companies of EDF Group share the same principles for waste management, namely:

- Minimising operation and maintenance waste generation at source, and use of the following waste hierarchy: “avoid, reduce, re-use, recycle, treat, package” while taking into account the limitations or bans prescribed by the regulator (re-use and recycling are in general possible within the nuclear industry, while recycling outside the industry is limited, even banned in some cases like in France)

- Segregation and streaming of waste;

- Processing by efficient use of existing treatment techniques;

- Storage, packaging and transport in accordance with applicable regulations;

- Waste radioactivity measurement and/or assessment and compliance with control procedures.

EDF Group’s main objective is to maintain radiation doses to the workforce and to the general public from radioactive waste management operations (including disposal and transport), below legal limits and As Low As Reasonably Achievable (ALARA principle). In line with this goal and in compliance with its certified EMS, EDF Group companies have put in place and regularly improve management processes such as:

- optimisation of waste management and treatment systems,

- maintenance and improvement (e.g. through training) of practices and behaviours,

- search for excellence by benchmarking with other operators,

- and collaboration with international organisations and with service providers (e.g. for treatment or for recycling).

19 The scope of EDF’s SME is the largest worldwide
In France, in cooperation with the Agence nationale pour la gestion des déchets radioactifs (ANDRA, National Agency for Radioactive Waste Management), EDF ensures that final storage of radioactive waste takes place safely, under the best technical, economic and environmental conditions.

ANDRA classifies radioactive waste based on two criteria:

- Radioactivity level, related to the amount of radiation from the radioelements contained in the waste, based on four levels of radioactivity: high level (HLW), intermediate level (ILW), low level (LLW) and very low level (VLLW);
- Lifetime (or half-life) of the waste, calculated on the basis of the time necessary for the radioactivity level of radioelements to be reduced by half.

Based on this classification, the radioactive waste generated by the activities of EDF’s nuclear companies may be broken down into five categories:

- Short-life, very low-level radioactive waste (SL-VLLW) originating primarily from the dismantling of decommissioned power plants. They include mostly rubble (concrete, soil, etc.) and scrap metals. They are placed in surface storage on the ANDRA (Cires) site at Morvilliers opened in 2003.
- Short-life, low-level and intermediate-level radioactive waste (SL-LLW/ILW) originating from maintenance operations: they may include tools, clothing, dismantled parts and components, etc., or generated by the nuclear plant process (treatment of liquid effluents, filtration of gaseous effluents) or from plant dismantling. This waste is stored at the ANDRA centre in Soulaines-Dhuys (CSA).

Short-life radioactive waste accounts for 90% of the total volume of radioactive waste, but concentrates only 0.1% of the total radioactivity.

- Long-life, low-activity level waste (LL-LLW): although the radioactivity level is low, this waste contains some elements with slow radioactivity decay. It consists primarily of graphite waste. Graphite was used in the first-generation power plants (UNGG design, or Natural Uranium Graphite-Gas) now shut down and under decommissioning. ANDRA is currently looking for a site to build LL-LAW storage facilities following the dismantling of UNGG reactors.
- Long-life, intermediate-activity level waste (LL-ILW) consisting mainly of the metal structures enclosing the spent fuel. In order to reduce the volume of this waste as much as possible, a
significant portion is compacted into “cakes” and placed in steel packages. This waste is currently stored at the Areva site in La Hague pending the development of a suitable storage repository. This waste may also originate from nuclear plants in operation (metal parts) or undergoing decommissioning. In compliance with its decommissioning programme and related industrial responsibilities, EDF is currently building a temporary storage facility at the Bugey (Ain) power plant site, pending the development of a deep geological storage repository as final management solution for this type of waste. This temporary waste facility, named ICEDA (for *Installation de conditionnement et d'entreposage de déchets activés*), will enable the packaging and storage of long-life, intermediate-level radioactive waste generated by the nine EDF reactors currently undergoing dismantling. Waste of a similar nature originating from operational reactors will also be stored on this site, pending their full disposal to the ANDRA final storage repository planned under the Law of 2006. Construction works at the ICEDA site started in 2009, but were interrupted in January 2012 further to the cancellation of the building permit by the Lyon Administrative Court. In December 2014, the Administrative Court of Appeal of Lyon annulled the first Court order of 13 December 2011, thereby restoring the validity of the initial ICEDA building permit. Since then, EDF has resumed the construction of the ICEDA facility.

- Long-life, high-activity level waste (LL-HLW) consisting primarily of non-reclaimable materials recovered after processing of spent fuel. The long-term reference solution for management of long-life, high-activity level waste is deep geological storage (CIGEO).

As a general rule, the safety of radioactive waste packages dispatched to specialised processing facilities or storage centres relies essentially on the quality of waste packages. The waste containers (concrete, steel or lead casks) are designed for specific types of waste and take into account various hazards both in the operational phase (warehousing, transportation, etc.) and during storage. Waste packages are governed by national and international shipping regulations, for the purpose of protecting the public and the environment from all types of hazards.

In the UK, radioactive waste is classified as either Lower Activity Waste (LAW), or Higher Activity Waste (HAW). LAW includes Very Low Level Waste (VLLW), Lower Level Radioactive Waste (LA-LLW) and Low Level Waste (LLW). HAW includes Intermediate Level radioactive Waste (ILW) and High Level radioactive Waste (HLW).

Provided the radioactive waste meets specific criteria, each category of radioactive waste is managed as follows:

- **VLLW**: Consigned for landfill or off-site incineration.
- **LA-LLW**: Sent off site for treatment and/or disposal
- **LLW**: Sent for treatment and/or disposal
- Volume reduction by supercompaction,
- Recycled at a Metals Recycling Facility, or
- Volume reduced at a High Temperature Incinerator.
- Disposal - LLW may be disposed of at the national Low Level Waste Repository (LLWR).
- **ILW**: Stored in purpose built facilities for radioactive decay and/or pending packaging for disposal. Where the capacity of plant storage facilities does not meet the volume of operational waste, the relevant waste is packaged to the anticipated requirements of a future national repository (for English plants), and placed in on-site interim storage. Scottish national policy differs in so far as ILW will be packaged in preparation for long term storage in Scotland.
- **HLW**: Under historic contractual arrangements, spent fuel from our AGRs is transported to Sellafield for reprocessing or storage. Once processed, HLW exists in the form of glass

EDF does not yet directly use these disposal routes but we are preparing to review their viability.
contained within stainless steel canisters for long term storage at Sellafield. HLW is not stored at any of our sites. Spent nuclear fuel is not currently classified as waste since it can be reprocessed to extract uranium and plutonium for re-use. However, unprocessed spent fuel will require disposal using a similar approach to ILW. At our Sizewell B PWR station, spent fuel is stored on site until a final decision is determined on how it will be disposed. We are planning to build a new facility to enable accumulation of the station’s spent fuel until the end of its operational life. Currently, the government’s policy for the management of spent fuel from Sizewell B (and new build) is that it will be directly consigned from on site storage to a national disposal repository. Disposal of spent fuel from Sizewell B will not occur for a number of decades.

Note: Some LAW, ILW and HLW are collectively referred to as HAW

At EDF Energy,

At the end of 2011, EDF Energy launched a new process called Sustainable Approach to Waste Management (SAWM), which aims to improve our performance whilst integrating with existing related company processes. A new Fleet Strategy (FS) for waste, Radioactive Waste Improvement Plan (RWIP) and Technical Baseline and underpinning Research and Development (TBuRD) documents have been issued, whose requirements will be implemented across the fleet. SAWM, through the FS, will develop and manage the use of performance indicators. Fleet strategy and waste management practices are defined through a suite of Company Specifications for all waste types, for which compliance and Best Available Techniques (BAT) are routinely reviewed. Consideration of the waste management hierarchy underpins these Company Specifications to ensure that waste disposal to land is always the final option. The waste management hierarchy provides a framework for preventing, minimising, treating and disposing of waste.

EDF Energy has developed new arrangements for the management of HAW to prepare for the packaging of ILW at Sizewell, which began in January 2014 and is continuing in 2014. The AGR plants will be incorporating the HAW management arrangements into their processes from 2014, commensurate to their current requirements.

4.4 Spent Fuel

4.4.1 Policy

Our overall commitment is to play a leading role in the drive for continuous improvement in spent fuel management across the industry worldwide. Improvements target several issues, both for existing fleet and for new reactors:

- Fuel behaviour in reactor core during normal operation and in accidental situations with the aim of minimising public radiological exposure,
- Safe management of spent fuel,
- Optimisation of the fuel cycle intended to minimise the amount of fuel used per MWh generated,
- Reprocessing/recycling (whenever authorised by the Regulator and possible within the local industrial context) designed to reduce the consumption of natural resources and improve the management of long-life waste.

EDF works jointly with governments, regulators, NGOs and other stakeholders to develop and demonstrate a long-term and comprehensive radioactive waste management solution for the nuclear industry.
4.4.2 Policy implementation

Management of spent fuel

Because fuel assemblies contain the most radioactive products, our primary focus is to deliver a safe management of spent fuel.

Spent fuel is handled under carefully controlled conditions and the process is managed and operated by suitably skilled, experienced and certified personnel (trained on handling machines with model assemblies or on full simulators). Spent fuel management requirements include handling, operation of spent fuel pools and specific tools, temporary storage, loading and control of shipping packages, and final dispatching organisation. All of these processes (loading, cleaning and checking of package contamination) are carried out under strictly controlled procedures to ensure safety and compliance with regulations, and under a process of continuous improvement present in all Group companies.

Fuel-cycle optimisation and behaviour of fuel assemblies

EDF works closely with fuel designers and suppliers on these two related aspects, both via research programme and experimentations with new alloys for the cladding which are more corrosion-resistant and more resilient in case of accident, and to extend the duration of the life-cycle of an assembly, by safely increasing their burn-up. These improvements need time and close cooperation with suppliers, spent-fuel processors and safety authorities. They may have some impacts on spent fuel reprocessing and storage procedures, and therefore require finding the optimum process.

Long-term management and reprocessing

In France, EDF has made the choice of spent-fuel reprocessing and recycling of fissile materials, with the target of reducing the volume and the harmfulness of the final portion of radioactive waste. EDF sends around 1,100 tonnes of spent fuel each year to AREVA for reprocessing at La Hague, and the recycled portion of the fresh fuel we reintroduce in reactors represents 10% of the energy generated. In order to avoid plutonium accumulation, the processing flow rate is consistent with the recycling capacity (number of power plants authorised to receive MOX fuel). The volume of Long Life-High Level waste (LL/HLW) generated in the reprocessing plant of La Hague each year is of 150 cubic metres. The Long Life-Intermediate Level waste (LL/ILW) generated represents 200 cubic metres per year.

In the UK all spent fuel from the AGRs is transferred off-site to Sellafield for long-term storage or processing. For PWR (Sizewell B) the current long-term spent fuel management plans include a purpose built facility at Sizewell site. The spent fuel will be stored on site until national facilities are available for off-site disposal of fuel.

New reactors

The new EPR reactor will have a larger core than its predecessors. Composed of 241 assemblies, its cladding will be made of new more resilient alloy. The planned cycle time will be 18 to 22 months with an average burn-up of 60 GWj/t (compared to 45 GWj/t for the existing French reactors) and the use of MOX will be possible but not yet contemplated.

Beyond its performance and power capability, the EPR core presents benefits in terms of waste generation. Thanks to its size, to the number of assemblies, to the use of neutron shields, and to the efficiency of the steam turbine, the efficiency of fuel use is 22% higher compared to a current type of

PWR reactor and the generation of long-life waste is 26% lower21. Due to its higher activity, the impacts of spent fuel on transport, processing and storage had to be assessed before its use in the reactor. These impacts have been predicted by safety institutes in France and UK to be compatible with current operating arrangements even if, in some cases, some arrangements in the current provisions are to be made (e.g. ILW packaging, cooling time in pools, requirements for final disposal...)22.

4.5 RADIOACTIVE WASTE FROM DECOMMISSIONING

4.5.1 Policy

Decommissioning each station at the end of its operational life is the common policy shared among the Group, in accordance with the applicable laws of the country where each station operates and with the purpose of making the site compatible with new use.

EDF takes full financial and technical responsibility for the decommissioning of its nuclear power plants. For EDF, the issue is to demonstrate, through the decommissioning process, its full control over all steps throughout the entire life cycle of its nuclear power facilities.

4.5.2 Policy implementation

Nuclear Station decommissioning involves three levels following a terminology defined by International Atomic Energy Agency (IAEA) in 1980:

- Level 1: final shutdown of the reactor, fuel unloading, emptying of circuits (99,9% of radioactivity is eliminated), then final decommissioning: dismantling of non-nuclear facilities, that have been definitively removed of service, access limited to buildings under surveillance;
- Level 2: dismantling of non-nuclear buildings and of nuclear auxiliary buildings (outside of reactor building), conditioning and transport of waste to waste-disposal facilities, isolation, containment and monitoring of the auxiliary installations surrounding reactor building,
- Level 3: complete dismantling and removal of reactor building, of remaining radioactive materials and equipments: monitoring is no longer required. After these various phases, the site can be reused as an industrial site.

Usually, phases leading to level 1 and then level 2 are carried out successively over a 5 to 10 years period after reactor final shutdown. Phases leading to level 3 cover a period of about 10 to 15 years. Furthermore, non-nuclear buildings can be kept and used during the decommissioning phases.

Other policies exist at international level: deferred dismantling (from some years to several decades after the shutdown), immediate dismantling.

In France, the reference scenario decided by EDF since 2001 is an immediate dismantling, in accordance with French regulation which requires dismantling « in short a time as possible, between final shutdown and complete dismantling» (see Regulation of the 7th February 2012 laying down general rules for basic nuclear facilities).

The regulatory framework of decommissioning is governed by TSN law and its implementing decree n° 2007-1557 of 2nd November 2007 (see section 6.5.6.2.2 (« specific regulations, applicable to basic nuclear facilities »)). For any given site, its main characteristics are:

- An individual authorization decree is issued after obtaining favourable opinion by the French Regulator (ASN), allowing decommissioning,
- Key meetings with the French Regulator are integrated into Nuclear Safety Guidelines, relevant to definitive decommissioning and dismantling phases,

21 See §11.3.2 of the Flamanville 3 safety report

22 See http://www.epr-reactor.co.uk/scripts/ssmod/publigen/content/templates/Show.asp?P=340&L=EN
An internal approval process, independent of its operational departments and audited by the French Regulator, allows to launch particular works with a temporary derogation within the limits of the regulatory framework,

During preliminary phases to obtain authorization decree:

- At least three years before final shutdown, the operating organization should submit an application containing the final decommissioning plan (article 40 of implementing decree n° 2007-1557), for review and approval to its regulatory body and to the French Regulator (ASN) (article 37 of implementing decree n° 2007-1557),
- Public consultations and inquiries should be organized (article 38 of implementing decree n° 2007-1557).

At the end of 2014, the progress of global decommissioning plan was at 43.4%, three sites were beyond 50% of progress: Chooz, Creys-Malville and Brennilis.

Major milestones have been achieved with success. Among the most recent ones, we can point out:

- Treatment of 5900 tonnes of sodium, coming from Superphénix Reactor and decommissioning of the sodium to caustic soda converting facility,
- Completion of primary circuit dismantling at Chooz A with transport to CIRES (Centre Industriel de Regroupement d’Entreposage et de Stockage de l’ANDRA – Waste disposal facility of ANDRA), after having decontaminated the 4 steam generators,
- Final clean-up of the effluent outlet of waste management facility at Brennilis.

Other important activities are in progress or are going to start soon:

- Dismantling of heat exchangers at Chinon A3 (In progress);
- Dismantling of heat exchangers at Brennilis (In progress);
- Dismantling of waste management facility at Brennilis (In progress);
- Dismantling of reactor pressure vessel at Chooz A (From 2016);
- Dismantling of reactor pressure vessel at Creys-Malville (From 2017).

In the UK, it should be noted that, no decommissioning has yet been carried out for any of our nuclear power station sites. Power station decommissioning, following a planned end of generation, remains some years off. However, detailed baseline decommissioning plans for each of our power plants are in place. These plans have been developed over a number of years/iterations and have been formally approved by our regulators and NDA. The detailed Baseline Decommissioning Plans (BDPs) include sites specific detail on each individual decommissioning activity and process including the requirements to transition from an operational site to a decommissioning site following end of generation. The transition from operation to decommissioning includes consideration of the associated resourcing and training requirements.

The potential impacts of the company’s operational activities on decommissioning are a key consideration. For example all engineering changes to plant or processes are formally assessed to consider the potential implications to decommissioning, decommissioning wastes and the associated liabilities. In addition, the company carries out an annual review of any potential impacts of power station operations on decommissioning and liabilities and formally reports this to the NDA within the Annual Liabilities Report: Part 1” (ALR1). The ALR1 provides a formal route for recording changes in our Generation decommissioning and waste liabilities which may have occurred over the previous financial year. Any impacts of engineering changes, operational changes and events etc, during the operational period are assessed for potential to impact on decommissioning.

Radioactive wastes from decommissioning operations will either be stored or disposed of depending on the availability of appropriate disposal routes, and in accordance with UK Government and Scottish Government policies - noting that that radioactive waste will be disposed of only where a full disposal route exists.
The LLWR site near Drigg in Cumbria (Scotland) is currently available for the disposal of operational and decommissioning LLW within the constraints of its acceptance criteria and is expected to remain operational until at least 2050. It is the Government’s intent that a National Repository (Geological Disposal Facility (GDF)) for ILW will be constructed, although it is presently not expected to be available before 2040. EDF Energy’s decommissioning plans detail the sequence for dismantling the plants and calculate the amounts of radioactive and non-radioactive material that will be created. These plans use sustainability and recycling principles to ensure materials created are stored, recycled and disposed in a manner consistent with safety and environmental legislation. In this context, the concept of “disposal and handling” reflects the strategic end-point assumption that the waste has been conditioned/packaged, placed within the GDF and the GDF facility is definitively closed. For the waste strategic end-point - waste disposed of to GDF - there are no alternative strategic options.

The inventory of materials and waste projected by EDF Energy during decommissioning is contained in the latest publication of the National Inventory Statement (The 2013 UK Radioactive Waste Inventory - URN 14D037 NDA/ST/STY(14)0007 February 2014). An EDF Energy document specifies the arrangements by which decommissioning of our power plants will be controlled to ensure compliance with all statutory and mandatory requirements. It describes the regulatory compliance (Site Licence), interface requirements and arrangements necessary for managing decommissioning at EDF Energy Generation’s power plants. Radioactive waste will be managed in accordance with the Corporate Radioactive Waste Management Strategy and the Integrated Company Practice for Environmental Compliance and Management.

EDF Energy Generation is accredited to ISO 14001 for all of its power plants. In addition, the Sizewell B plant has been certified under the standards of the European Eco-Management and Audit Scheme. This demonstrates that environmental concerns are fully integrated into EDF Energy's business; within the Company, there are a number of teams and specialists whose role it is to investigate and define environmental policies, strategy, standards and procedures. Others monitor the compliance against targets and provide advice and assistance on best practices to achieve them.

Enhancement of new reactor design, taking decommissioning into account

While the initial design of the past generation of reactors had not taken into account the prospect of decommissioning, it has now become a mandatory prerequisite in most countries. The design of the EPR has specifically integrated the best international state-of-the-art knowledge on these issues.

The provisions selected in the design phase aim at two targets at an acceptable cost: the reduction of collective doses for the operational staff and reduction of generated waste. The main provisions are as follows:

- Use less materials that can be easily activated during operation (e.g. stellite, less cobalt in metallic alloys...)
- Implementation of shields and barriers preventing the activation of structural materials
- Easy dismantling of equipment, areas for handling
- Circuits and premises designed specifically to prevent the accumulation of contamination and to facilitate its removal.

23 For more details please consult the safety report for Flamanville3 at the following address: http://energie.edf.com/nucleaire/carte-des-centrales-nucleaires/epr-flamanville-3/publications-48527.html
5. TRAINING

5.1 OVERVIEW ON HUMAN RESOURCES AND TRAINING POLICY

In EDF Group culture, economic and environmental performance is strongly linked to social performance.

Historically, EDF has always clearly expressed its ambition around both an industrial, economic and social project, that is to say a human adventure where the absolute priority is afforded to skills development.

The human resources policy of EDF is thus based on three key priorities shared by all businesses and companies within the Group:

- People development: develop the skills required for business and, at the same time, place people at the heart of the industrial project, with a recruitment policy and a dynamic training approach, relying in particular on apprenticeships,
- Set up recognition, quality of life at work, health and safety as levers driving employees’ engagement to sustainable performance, fulfilling the EDF Group commitments to well-being at work, work-life balance, diversity,
- Introduce more diversity and strengthen our common culture, especially among managers and experts in order to build an integrated Group in France and on the international scale.

The EDF Group's ambition is to continue investing heavily in human resources and skills development through vocational training. The ambitious goals, the introduced innovations and the resources dedicated through the Training Agreement signed in 2010 with all Trade Unions (Accord Défi Formation of 10 September 2010) reflect the intensification of this effort, which must find its counterpart in improved performance for each of the Group companies. This agreement ambitions to turn skills development and renewal into a driver of the Group’s expansion and to create a genuine “social ladder” for new hires (e.g. work/study apprenticeship) and throughout career paths (advancement training).

Growing needs and sustainable performance rely on skills development

EDF Group is now facing new challenges:

- The businesses and activities evolve, in line with technological, economic and environmental challenges in the energy sector, with increasingly stringent requirements (on nuclear safety in particular) and with EDF Group’s ambitions for business development in France and on an international scale,
- The resumption of industrial investments in all sectors and the development of nuclear engineering activities which will dramatically increase the need for skills,
- In France, between 25 and 30% of the total EDF workforce will retire by 2015, a figure that rises 1.5 times when considering the number of maintenance and operation staff in the fields of production, engineering and distribution.

In addition, EDF intends to be acknowledged as a company committed to mitigating and controlling the environmental impacts of its business activities. Its nuclear business is most particularly concerned since the future level of requirements needs to be anticipated, under the dual oversight of public opinion and of the administrative authorities setting legal and regulatory requirements. Accordingly, EDF addresses the issue of skills renewal and upgrading for its personnel by taking into account both of these key issues essential for the acceptability of its industrial activities.

A strong and sustained investment in training and apprenticeship

EDF Group, which operates in a context of high-technology professions, has always devoted a large budget to the training of its employees in support of technological or organisational changes and career paths. Every year, EDF thus spends about 8% of its budget on training. EDF Group intends
to pursue this investment in vocational training (apprenticeship, professional training contracts, internal promotional training) with the necessary resources to match its ambition. EDF also benefits from tools in line with the expectations of current and future employees (e-learning, serious games, on-site training tools, the Group Intranet, edfrecrute.com Web site etc).

To anticipate and guarantee that EDF will in the long-term have the right number of employees with a high level of relevant qualification, a set of collective systems for training and upskilling has been set up, called the “Académies des métiers” (Business Academies). The objective is to seek excellence in operational and technical control, to integrate current and future challenges for every Division or Business Line in the up-skilling programmes and to ensure an optimal quality level. The Nuclear Engineering Business Academy focuses on the transmission of critical knowledge by senior workers, a major challenge for nuclear safety. After an assessment by the Business Academies Council (composed of corporate executives, HR and training professionals), a training proposal developed by a Division or by a Business Line and meeting the requirements receives an official "label", accompanied by recommendations for improvement.

Concurrently, EDF conducts significant recruitment programmes, especially in the fields of power generation (nuclear, hydro and thermal) to support its projects in France and on an international scale in order to meet the challenges of skills renewal.

The EDF Group intends to recognise and promote the ability of its employees to acquire, develop and maintain their skills connected with the qualifications required for business needs in order to be able to find or retain a satisfying job in their company or in any other EDF Group company. Mobility is encouraged with appropriate means shared by the various Group companies, whenever it meets the needs of the Group’s international mobility policy. EDF Group supports mobility because it enables employees to acquire new skills in different contexts, and to enrich their personal and professional experience, which is regarded as a major key to employability.
5.2 POLICY IMPLEMENTATION

The level of competency of EDF staff and its contractors is a vital issue for nuclear safety, operational safety and training is one of the major tools available to managers to maintain and improve skills. Managers choose the most relevant and efficient tool in order to meet each skills need among the various resources available for improving the skills of operators and technicians in their teams (mentoring, training, immersion, career path, etc.).

Training on activities related to nuclear safety, security, radiological protection, waste management and environmental protection must generally comply with legal requirements that may controlled in various ways, from internal assessments carried out by instructors and/or managers, up to external statutory accreditation. All processes are submitted to a quality assurance system and to external control by the ASN.

The three EDF Group nuclear companies are faced with different types of challenges:

- **EDF SA** will face numerous challenges over the coming years. After having operated the largest nuclear fleet in the world for thirty years without any major incident, EDF has to renew an entire generation of engineers and operators (numerous retirements), reinforce its operating performance and prepare the second half of the lifespan of its fleet with an expectation of 60 years. EDF has therefore established a project called “Generation 2020” where the reinforcement of workforce professionalism is one of five key programmes. Reinforcing professional skills relies on bolstered policies, organisations and resources:
 - Managers are empowered to and responsible for the skills development of their staff members, in order to define the needs close to the ground,
 - Feedback from operational experience is taken into account proactively in order to define the training needs,
 - In addition to centralised resources, the autonomy and resources of the nuclear plants are reinforced.

In addition, EDF SA has adopted a policy compliant with INPO international standards (ACAD02-001), and has added the topics of skills management and “strategic forward planning of jobs and skills”:

- Skills management
- Performance improvement through training management
- Management of training processes and resources
- Initial training
- Continuous training
- Implementation of training programmes and skills assessments
- Assessment of training efficiency
- Individual involvement in training management

To support the ambitious programme for initial training, EDF has created a centralised training unit with local branches on each site; the unit comprises more than 500 instructors, a large training centre in Le Bugey with simulators, workshops and computerised tools. Another training centre will be built in Saclay, next to the new EDF research centre. Each power plant has its own full-scale operation simulator and workshops dedicated to maintenance training which is opened to sub-contractors. These systems constitute the “Nuclear Academy”, one of the “Business Academies” put in place in the framework of the agreement signed in 2010 with trade unions intended to bolster a large training project at the entire Group scope.
All contractor employees must complete mandatory training courses matching their activities. The minimum basic programme includes several courses on the requirements of nuclear safety, security and radiological protection, waste management and environmental protection. This mandatory training is checked when entering a nuclear plant. Training includes courses in the following topics:

- “Quality and Safety” (5 days)
- “Nuclear Safety Accreditation” (1 to 3 days)
- “Risk Prevention” (5 days)
- “Advanced Radiation Protection” (6 courses of 1 to 5 days)
- A new course for executives has been recently created (9 days).

These training courses are delivered by institutions accredited by EDF and by an external certifier (CEFRI).

Training management is now one of the areas of continuous assessment of each nuclear plant by the Nuclear Generation Division (DPN); training management is also checked regularly by the ASN. By 2015, EDF Nuclear Generation Division plans to put in place an overall assessment process of skills management in each plant, comparable to the system in place at EDF Energy.

EDF Energy launched an ambitious and well-resourced programme, with the objective to respond to a difficult situation its fleet had to face in 2003-2004: resources for training were reinforced (the number of instructors and equipment at the training centre at Barnwood and on stations were increased), management of the training process was improved and put under the control of local Committees involving the top management of stations and the accreditation process was reinforced under the control of the Training Standards and Accreditation Board. The TSAB members sit in judgment of the capability and demonstrated performance of the evaluated line and training organisations to ensure nuclear personnel are being trained and qualified to perform their assigned activities safely, reliably, and efficiently. EDF Energy considers training an effective tool to improve the professional performance of individuals and, as a consequence, maintaining and improving safety, reliability and efficiency of EDF Energy's operating nuclear power plants.

6. **REPORTING**

6.1 **POLICY**

EDF Group as a whole promotes transparent communication and reporting on incidents and events, and on performance indicators, including safety, radiation protection and environmental protection.

Each Group company has put in place a public information process adapted to local regulations and generally reusing part of the data (most suitable for public understanding) reported to safety authorities. Since the requirements of such authorities are specific to each country, it is sometimes difficult to compare the different indicators, and therefore the various performance levels. It is also difficult to consolidate common indicators at Group level for the same reasons. Some of these indicators are included in reports or reviews that are produced regularly: Annual Activity Report, Sustainable Development Report or the annual Report of the Inspector General for Nuclear Safety and Radiological protection.

6.2 **POLICY IMPLEMENTATION**

Managers use these indicators as a management and progress monitoring tool, but not as an end in itself. They constitute a way to measure safety performance and its evolution. Each company uses a large number of indicators, some of which are linked to ongoing projects or processes, launched to
support the improvements targeted by the prevention process and to achieve excellence. These indicators are not all reported in the following pages because they are too numerous and specific to each company and action plan.

The main differences in practices for indicators are the following:

- In some countries the reactor operator is required to anticipate automatic protections (e.g. USA and UK) by conducting a “manual scram”, while in others the operator is required to let automatic protections do their job. The two approaches give rise to differences when comparing indicators: in the USA and UK, the number of automatic scrams is thus lower than if it were to include manually anticipated scrams.

- EDF Group places sustainability as the main objective of its industrial strategy. In France, EDF generates 85% of its electricity output from CO2-free technologies (hydropower, nuclear, wind, solar). Within this energy mix, the French nuclear fleet generates around 75% of the power output. The French nuclear fleet thus provides an operational flexibility enabling EDF to monitor and “follow” the power demand throughout the day and therefore to adapt its output to consumer needs and to the output fluctuations of solar and wind power farms. Without such flexibility, EDF would be forced to use “CO2-emitting conventional/fossil-fired” facilities to follow the demand. Accordingly, EDF targets a maximum availability rate for its nuclear fleet during winter months when demand is at its highest, and the power supply requires the availability of all generation facilities. In wintertime, the availability rate of the French nuclear fleet is comparable to the best-in-class world operators.

- The practice for rating an event on the INES scale differs from one country to another; a safety authority may have stricter and more severe requirements and use specific criteria; the French ASN has for instance defined “additional factors” that may affect the rating level of an incident (e.g. in cases when an event or failure can potentially affect several identical units)\(^\text{24}\).

- The reactors of the EDF fleets (France, US, UK) have different technologies and therefore different designs leading to major differences in dose measurements for operators. For instance, due to their design, the AGRs in the UK fleet have 10 times lower dose exposures (WANO reference).

- In the USA, event reporting is governed by regulations 10 CFR 50.72 and 50.73, as well as by technical specifications in the plant operating licences. This reporting does not use the International Nuclear Event Scale but the INPO classification tool to rate operating events depending on their more or less significant potential impact as “noteworthy” or “significant”.

- Still in the USA, plant safety and operational performance are measured with a composite index that includes the monitoring of significant events, significant anomalies found during inspections, and the performance of some safety-sensitive systems and processes. This indicator is established on a quarterly basis for each reactor, and benchmarked against the performance of all US power plants.

\(^\text{24}\) The number of events and their severity are not a direct measurement of the safety performance levels, as noted by IAEA itself
6.3 Performance Results 2008-2014

The Table below lists the indicator values requested by FTSE4Good.

<table>
<thead>
<tr>
<th>Indicators</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Automatic trips per reactor for 7000h reactivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDF SA</td>
<td>0.51</td>
<td>0.71</td>
<td>0.69</td>
<td>0.50</td>
<td>0.55</td>
<td>0.59</td>
<td>0.53</td>
</tr>
<tr>
<td>EDF Energy NG</td>
<td>1.13</td>
<td>0.82</td>
<td>0.58</td>
<td>0.74</td>
<td>0.64</td>
<td>0.45</td>
<td>1.17</td>
</tr>
<tr>
<td>2 INES 1+ Events and Incidents (Clst≥1) per reactor per year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDF SA</td>
<td>1.15</td>
<td>1.17</td>
<td>1.17</td>
<td>0.91</td>
<td>1.55</td>
<td>1.19</td>
<td>1.14</td>
</tr>
<tr>
<td>EDF Energy NG</td>
<td>1.13</td>
<td>0.80</td>
<td>0.93</td>
<td>1.33</td>
<td>1.00</td>
<td>0.67</td>
<td>0.33</td>
</tr>
<tr>
<td>3 Average Collective Dose (man-Sv/reactor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDF SA</td>
<td>0.66</td>
<td>0.69</td>
<td>0.62</td>
<td>0.71</td>
<td>0.67</td>
<td>0.79</td>
<td>0.72</td>
</tr>
<tr>
<td>EDF Energy NG-PWR</td>
<td>0.26</td>
<td>0.34</td>
<td>0.27</td>
<td>0.54</td>
<td>0.04</td>
<td>0.39</td>
<td>0.36</td>
</tr>
<tr>
<td>EDF Energy NG-AGR</td>
<td>0.17</td>
<td>0.10</td>
<td>0.02</td>
<td>0.08</td>
<td>0.06</td>
<td>0.03</td>
<td>0.07</td>
</tr>
<tr>
<td>4 Individual Dose (number of workers exposed to a dose over...)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDF SA > 20 mSv</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EDF SA > 16 mSv</td>
<td>14</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EDF Energy > 20 mSv</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EDF Energy > 15 mSv</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5 Dose to the most exposed public individual mSv/year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>0.006</td>
<td>0.006</td>
<td>0.007</td>
<td>0.006</td>
<td>0.006</td>
<td>0.006</td>
<td>0.005</td>
</tr>
<tr>
<td>France</td>
<td>0.002</td>
<td>0.002</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>Nd25</td>
</tr>
<tr>
<td>6 Decommissioning waste disposed of at EDF SA in metric tonnes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Low Level</td>
<td>1504</td>
<td>1240</td>
<td>634</td>
<td>2528</td>
<td>1110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low and intermediate level, short life</td>
<td>227</td>
<td>345</td>
<td>477</td>
<td>109</td>
<td>568</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sent to Centraco</td>
<td>237</td>
<td>261</td>
<td>278</td>
<td>20</td>
<td>187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 EDF SA operational waste (in m3/TWh)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLW/ILW</td>
<td>11.70</td>
<td>12.80</td>
<td>12.40</td>
<td>15.06</td>
<td>20.70</td>
<td>18.95</td>
<td></td>
</tr>
</tbody>
</table>

25 2014 results on individual doses are unavailable at the date of this report
Indicators

<table>
<thead>
<tr>
<th>Indicators</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL-LLW</td>
<td>0.87</td>
<td>0.88</td>
<td>0.88</td>
<td>0.87</td>
<td>0.88</td>
<td>0.86</td>
<td></td>
</tr>
</tbody>
</table>

EDF Energy operational waste (in m³)

<table>
<thead>
<tr>
<th>Indicators</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLW</td>
<td>607</td>
<td>498</td>
<td>608</td>
<td>698</td>
<td>655</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILW</td>
<td>170</td>
<td>162</td>
<td>161</td>
<td>161</td>
<td>178</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spent fuel (in tonnes of uranium)

<table>
<thead>
<tr>
<th>Indicators</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unloaded by EDF SA</td>
<td>1,282</td>
<td>1,141</td>
<td>1,138</td>
<td>1,204</td>
<td>1,096</td>
<td>1,205</td>
<td></td>
</tr>
<tr>
<td>Disposed by EDF SA</td>
<td>1,179</td>
<td>1,102</td>
<td>1,140</td>
<td>1,199</td>
<td>1,075</td>
<td>1,099</td>
<td></td>
</tr>
<tr>
<td>Unloaded by EDF Energy</td>
<td>210</td>
<td>163</td>
<td>212</td>
<td>190</td>
<td>216</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Disposed by EDF Energy</td>
<td>147</td>
<td>132</td>
<td>210</td>
<td>216</td>
<td>177</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments about above indicators:

These indicators are analysed and commented in several reports published by EDF:

- Annual Report of Inspector General for Nuclear Safety[^26],
- EDF financial and extra financial performance indicators booklet[^27],
- EDF Sustainable Development Report[^28].

In order to ensure consistency between these various reports, the analyses and comments are not duplicated in this document.

Appendix: List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFCEN</td>
<td>Association Française pour les règles de conception, de construction et de surveillance en exploitation des Chaudières Electro-Nucléaires</td>
</tr>
<tr>
<td>AFCN</td>
<td>Agence Fédérale de Contrôle Nucléaire (Belgium)</td>
</tr>
<tr>
<td>AGR</td>
<td>Advanced Gas-cooled Reactor</td>
</tr>
<tr>
<td>ALARA</td>
<td>As Low As Reasonably Achievable</td>
</tr>
<tr>
<td>ALARP</td>
<td>As Low As Reasonable Practicable</td>
</tr>
<tr>
<td>ANDRA</td>
<td>Agence Nationale pour la Gestion des Déchets Radioactifs (France)</td>
</tr>
<tr>
<td>ASN</td>
<td>Autorité de Sûreté Nucléaire (Nuclear Safety Authority, France)</td>
</tr>
<tr>
<td>BEG</td>
<td>British Energy Group (UK)</td>
</tr>
<tr>
<td>BWR</td>
<td>Boiling Water Reactor</td>
</tr>
<tr>
<td>CEFRI</td>
<td>Comité Français de Certification des Entreprises</td>
</tr>
<tr>
<td>CEG</td>
<td>Constellation Energy Group</td>
</tr>
<tr>
<td>CENG</td>
<td>Constellation Energy Nuclear Group</td>
</tr>
<tr>
<td>CEO</td>
<td>Chief Executive Officer</td>
</tr>
<tr>
<td>CGNPC</td>
<td>China Guangdong Nuclear Power Group</td>
</tr>
<tr>
<td>CPo, CP1, CP2</td>
<td>Contract Programme 0, 1 or 2</td>
</tr>
<tr>
<td>DCRG</td>
<td>Direction du Contrôle des Risques Groupe (EDF)</td>
</tr>
<tr>
<td>DG</td>
<td>Diesel Generators</td>
</tr>
<tr>
<td>DIN</td>
<td>Division de l’Ingénierie Nucléaire (EDF)</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Energy (USA)</td>
</tr>
<tr>
<td>DPI</td>
<td>Direction de la Production et de l’Ingénierie (EDF)</td>
</tr>
<tr>
<td>DPN</td>
<td>Direction de la Production Nucléaire (EDF)</td>
</tr>
<tr>
<td>EDF</td>
<td>Electricité de France</td>
</tr>
<tr>
<td>EDG</td>
<td>Emergency Diesel Generator</td>
</tr>
<tr>
<td>EGE</td>
<td>Evaluation Globale d’Excellence (Operational Excellence Assessment, EDF Nuclear Inspectorate)</td>
</tr>
<tr>
<td>EMS</td>
<td>Environmental Management System</td>
</tr>
<tr>
<td>EPR</td>
<td>European Pressurised Reactor</td>
</tr>
<tr>
<td>EPRI</td>
<td>Electrical Power Research Institute (USA)</td>
</tr>
<tr>
<td>EURATOM</td>
<td>European Atomic Energy Community</td>
</tr>
<tr>
<td>FARN</td>
<td>Force d’Action Rapide Nucléaire (Nuclear Rapid Action Force, EDF)</td>
</tr>
<tr>
<td>FBR</td>
<td>Fast Breeder Reactor</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FTSE</td>
<td>Financial Times Stock Exchange</td>
</tr>
<tr>
<td>GDF</td>
<td>Geological Disposal Facility (UK)</td>
</tr>
<tr>
<td>GINSR</td>
<td>General Inspector for Nuclear Safety and Radiation Protection</td>
</tr>
<tr>
<td>GRS (or GSR)</td>
<td>General Requirement for Safety (IAEA)</td>
</tr>
<tr>
<td>GTS</td>
<td>Groupe Technique Sûreté (EDF)</td>
</tr>
<tr>
<td>GWd/t</td>
<td>Giga Watt-day per ton</td>
</tr>
<tr>
<td>HLW</td>
<td>High (activity) Level Waste</td>
</tr>
<tr>
<td>HR</td>
<td>Human Resources</td>
</tr>
<tr>
<td>HSE</td>
<td>Health and Safety Executive (UK)</td>
</tr>
<tr>
<td>IAEA</td>
<td>International Atomic Energy Agency</td>
</tr>
<tr>
<td>ICRP</td>
<td>International Commission on Radiological Protection</td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency</td>
</tr>
<tr>
<td>IGSNR</td>
<td>Inspecteur Général pour la Sûreté Nucléaire et la Radioprotection (Inspector General for Nuclear Safety & Radioprotection, France, EDF)</td>
</tr>
<tr>
<td>ILW</td>
<td>Intermediate Level Waste</td>
</tr>
<tr>
<td>INB</td>
<td>Installation Nucléaire de Base (Basic Nuclear Facility, France)</td>
</tr>
<tr>
<td>INES</td>
<td>International Nuclear Events Scale</td>
</tr>
<tr>
<td>INPO</td>
<td>Institute of Nuclear Power Operators (USA)</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>INSAG</td>
<td>International Nuclear Safety Advisory Group (IAEA)</td>
</tr>
<tr>
<td>IRSN</td>
<td>Institut de Radioprotection et de Sûreté Nucléaire (France)</td>
</tr>
<tr>
<td>ISFSI</td>
<td>Independent Spent Fuel Storage Installation (USA)</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>LL/LLW</td>
<td>Low Level/Long Life Waste</td>
</tr>
<tr>
<td>LLW</td>
<td>Low Level Waste</td>
</tr>
<tr>
<td>LLWR</td>
<td>Low Level Waste Repository</td>
</tr>
<tr>
<td>Loi TSN</td>
<td>Loi sur la Transparence et La Sûreté en matière Nucléaire (France – Law on Transparency and Nuclear Safety)</td>
</tr>
<tr>
<td>MOX</td>
<td>Mixed oxide</td>
</tr>
<tr>
<td>mSv</td>
<td>Millisievert (= 0.001 Sievert) (= 0.1 Rem)</td>
</tr>
<tr>
<td>NEI</td>
<td>Nuclear Energy Institute (USA)</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Protection Agency (China)</td>
</tr>
<tr>
<td>NLF</td>
<td>Nuclear Liabilities Fund (UK)</td>
</tr>
<tr>
<td>NMP</td>
<td>Nine Mile Point (nuclear power plant, USA)</td>
</tr>
<tr>
<td>NNSA</td>
<td>National Nuclear Safety Administration (China)</td>
</tr>
<tr>
<td>NPP</td>
<td>Nuclear Power Plant</td>
</tr>
<tr>
<td>NRC</td>
<td>Nuclear Regulatory Commission (USA)</td>
</tr>
<tr>
<td>NSC</td>
<td>Nuclear Safety Council</td>
</tr>
<tr>
<td>NSOC</td>
<td>Nuclear Safety Operational Committee (CENG)</td>
</tr>
<tr>
<td>NSRB</td>
<td>Nuclear Safety Review Board (CENG)</td>
</tr>
<tr>
<td>NUGG</td>
<td>Natural Uranium Graphite/Gas (reactor)</td>
</tr>
<tr>
<td>NWPA</td>
<td>Nuclear Waste Policy Act (USA)</td>
</tr>
<tr>
<td>OEA</td>
<td>Operational Excellence Assessment (EDF Nuclear Inspectorate)</td>
</tr>
<tr>
<td>ONR</td>
<td>Office for Nuclear Regulation (UK)</td>
</tr>
<tr>
<td>OSART</td>
<td>Operational Safety Assessment Review Team</td>
</tr>
<tr>
<td>PIRP</td>
<td>Politique Industrielle et Relations avec les Prestataires (Industrial Policy and Suppliers Relations Policy, EDF)</td>
</tr>
<tr>
<td>PNGMDR</td>
<td>Plan National de Gestion des Matières et Déchets Radioactifs (National Plan for Radioactive Materials and Waste, France)</td>
</tr>
<tr>
<td>PPI</td>
<td>Plan Particulier d’Intervention (Special Intervention Plan, France)</td>
</tr>
<tr>
<td>PSR</td>
<td>Periodic Safety Review</td>
</tr>
<tr>
<td>PUI</td>
<td>Plan d’Urgence Interne (Internal Emergency Plan, France)</td>
</tr>
<tr>
<td>PWR</td>
<td>Pressurised Water Reactor</td>
</tr>
<tr>
<td>RMD</td>
<td>Risk Management Division (EDF)</td>
</tr>
<tr>
<td>SER</td>
<td>Significant Event Report</td>
</tr>
<tr>
<td>SOER</td>
<td>Significant Operating Experience Event Report (INPO, USA)</td>
</tr>
<tr>
<td>STE</td>
<td>Spécifications Techniques d’Exploitation (Operational Technical Specifications, France)</td>
</tr>
<tr>
<td>TMI</td>
<td>Three Mile Island (USA)</td>
</tr>
<tr>
<td>TNPJVC</td>
<td>Taishan Nuclear Power Joint Venture Company (China)</td>
</tr>
<tr>
<td>TSAB</td>
<td>Training Standards Accreditation Board</td>
</tr>
<tr>
<td>TSM</td>
<td>Technical Support Mission (EDF)</td>
</tr>
<tr>
<td>TSN</td>
<td>Transparence et Sécurité Nucléaire (French law on Transparency and Nuclear Safety)</td>
</tr>
<tr>
<td>TSO</td>
<td>Technical Specifications during Operation (EDF)</td>
</tr>
<tr>
<td>TWh</td>
<td>Tera Watt-hour (= billion of KWh)</td>
</tr>
<tr>
<td>UATR</td>
<td>Unplanned Automatic Trip Rate</td>
</tr>
<tr>
<td>UNE</td>
<td>Unistar Nuclear Energy</td>
</tr>
<tr>
<td>UNGG</td>
<td>Uranium Naturel Graphite Gaz (France) (see NUGG)</td>
</tr>
<tr>
<td>USNRC</td>
<td>United States Nuclear Regulatory Commission</td>
</tr>
<tr>
<td>VLLW</td>
<td>Very Low Level Waste</td>
</tr>
<tr>
<td>WANO</td>
<td>World Association of Nuclear Operators</td>
</tr>
<tr>
<td>WNA</td>
<td>World Nuclear Association</td>
</tr>
</tbody>
</table>
French acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAR</td>
<td>Arrêt Automatique Réacteur</td>
</tr>
<tr>
<td>AFCEN</td>
<td>Association Française pour les règles de conception, de construction et de surveillance en exploitation des Chaudières Electro-Nucléaires</td>
</tr>
<tr>
<td>AFCN</td>
<td>Agence Fédérale de Contrôle Nucléaire Belge</td>
</tr>
<tr>
<td>AIEA</td>
<td>Agence Internationale pour l’Energie Atomique</td>
</tr>
<tr>
<td>ANDRA</td>
<td>Agence Nationale pour la Gestion des Déchets Radioactifs (France)</td>
</tr>
<tr>
<td>CEFRI</td>
<td>Comité Français de Certification des Entreprises</td>
</tr>
<tr>
<td>CIPR</td>
<td>Commission Internationale de Protection contre les Rayonnements</td>
</tr>
<tr>
<td>CPo, CP1, CP2</td>
<td>Contrat Programme 0, 1 ou 2</td>
</tr>
<tr>
<td>DCRG</td>
<td>Direction du Contrôle des Risques Groupe (EDF)</td>
</tr>
<tr>
<td>DIN</td>
<td>Division de l’Ingénierie Nucléaire</td>
</tr>
<tr>
<td>DPI</td>
<td>Direction de la Production et de l’Ingénierie (EDF)</td>
</tr>
<tr>
<td>DPN</td>
<td>Division de la Production Nucléaire (EDF)</td>
</tr>
<tr>
<td>EDF</td>
<td>Electricité de France</td>
</tr>
<tr>
<td>EGE</td>
<td>Evaluation Globale d’Excellence (Inspection Nucléaire d’EDF)</td>
</tr>
<tr>
<td>EPR</td>
<td>European Pressurised Reactor</td>
</tr>
<tr>
<td>EURATOM</td>
<td>European Atomic Energy Community</td>
</tr>
<tr>
<td>FARN</td>
<td>Force d’Action Rapide Nucléaire</td>
</tr>
<tr>
<td>FMA</td>
<td>déchets de Faible et Moyenne Activité</td>
</tr>
<tr>
<td>GTS</td>
<td>Groupe Technique Sûreté</td>
</tr>
<tr>
<td>GWj/t</td>
<td>Giga Watt-jour par tonne</td>
</tr>
<tr>
<td>IGSNR</td>
<td>Inspecteur Général pour la Sûreté Nucléaire et la Radioprotection</td>
</tr>
<tr>
<td>INB</td>
<td>Installation Nucléaire de Base</td>
</tr>
<tr>
<td>IRSN</td>
<td>Institut de Radioprotection et de Sûreté Nucléaire</td>
</tr>
<tr>
<td>Loi TSN</td>
<td>Loi sur la Transparence et La Sûreté en matière Nucléaire</td>
</tr>
<tr>
<td>mSv</td>
<td>MilliSievert (= 0,001 Sievert) (= 0,1 Rem)</td>
</tr>
<tr>
<td>MWh</td>
<td>Méga Watt-heure (= millier de kWh)</td>
</tr>
<tr>
<td>OSRDE</td>
<td>Observatoire Sûreté Radioprotection Disponibilité Environnement</td>
</tr>
<tr>
<td>PIRP</td>
<td>Policy Industrielle et Relations avec les Prestataires</td>
</tr>
<tr>
<td>PNGMDR</td>
<td>Plan National de Gestion des Matières et Déchets Radioactifs</td>
</tr>
<tr>
<td>PPI</td>
<td>Plan Particulier d’Intervention (Special Intervention Plan, France)</td>
</tr>
<tr>
<td>PUI</td>
<td>Plan d’Urgence Interne (Internal Emergency Plan, France)</td>
</tr>
<tr>
<td>REB</td>
<td>Réacteur à eau Bouillante</td>
</tr>
<tr>
<td>REP</td>
<td>Réacteur à Eau Pressurisée</td>
</tr>
<tr>
<td>SME</td>
<td>Système de Management Environnemental</td>
</tr>
<tr>
<td>STE</td>
<td>Spécifications Techniques d’Exploitation</td>
</tr>
<tr>
<td>TFA</td>
<td>déchets de Très Faible Activité</td>
</tr>
<tr>
<td>TSN</td>
<td>Loi TSN : Transparence et Sûreté en matière Nucléaire</td>
</tr>
<tr>
<td>TWh</td>
<td>Téra Watt-heure (= milliard de kWh)</td>
</tr>
<tr>
<td>UNGG</td>
<td>Uranium Naturel Graphite Gaz (France)</td>
</tr>
</tbody>
</table>