Rapport annuel d’information du public relatif aux installations nucléaires de base de CHOOZ

2016

Ce rapport est rédigé au titre des articles L125-15 et L125-16 du code de l’environnement
SOMMAIRE

SOMMAIRE ... 02
INTRODUCTION .. 03

1 - LES INSTALLATIONS NUCLÉAIRES DU SITE DE CHOOZ ... 05

2 - LA PRÉVENTION ET LA LIMITATION DES RISQUES ET INCONVÉNIENTS 07

2.1. DÉFINITIONS ET OBJECTIFS : RISQUES, INCONVÉNIENTS, INTÉRÊTS PROTÉGÉS 07

2.2. LA PRÉVENTION ET LA LIMITATION DES RISQUES ... 08

2.2.1. La sécurité nucléaire .. 08

2.2.2. La maîtrise du risque incendie en lien avec les services départementaux d’incendie et de secours .. 10

2.2.3. La maîtrise des risques liés à l’utilisation des fluides industriels ... 12

2.2.4. Les évaluations complémentaires de sûreté suite à l’accident de Fukushima 13

2.2.5. L’organisation de la crise ... 15

2.3. LA PRÉVENTION ET LA LIMITATION DES INCONVÉNIENTS .. 17

2.3.1. Les impacts : prélèvements et rejets ... 17

2.3.1.1. Le contrôle des rejets et la surveillance de l’environnement .. 17

2.3.1.2. Les rejets d’effluents radioactifs liquides ... 18

2.3.1.3. Les rejets d’effluents radioactifs à l’atmosphère ... 19

2.3.1.4. Les rejets chimiques ... 20

2.3.1.5. Les rejets thermiques ... 21

2.3.2. Les nuisances ... 22

2.4. LES RÉEXAMENS PÉRIODIQUES .. 24

2.5. LES CONTRÔLES ... 25

2.5.1. Les contrôles internes .. 25

2.5.2. Les contrôles externes .. 27

2.6. LES ACTIONS D’AMÉLIORATION .. 29

2.6.1. La formation pour renforcer les compétences ... 29

2.6.2. Les procédures administratives menées en 2016 .. 30

3 - LA RADIOPROTECTION DES INTERVENANTS .. 31

4 - LES INCIDENTS ET ACCIDENTS SURVENUS SUR LES INSTALLATIONS EN 2016 33

5 - LA NATURE ET LES RÉSULTATS DES MESURES DES REJETS .. 35

5.1. LES REJETS RADIOACTIFS ... 35

5.1.1. Les rejets d’effluents radioactifs liquides .. 35

5.1.2. Les rejets d’effluents radioactifs à l’atmosphère .. 38

5.2. LES REJETS NON RADIOACTIFS .. 39

5.2.1. Les rejets chimiques .. 39

5.2.2. Les rejets thermiques .. 40

6 - LA GESTION DES DÉCHETS .. 41

6.1. LES DÉCHETS RADIOACTIFS ... 41

6.2. LES DÉCHETS NON RADIOACTIFS .. 46

7 - LES ACTIONS EN MATIÈRE DE TRANSPARENCE ET D’INFORMATION 48

CONCLUSION .. 51
GLOSSAIRE .. 52
RECOMMANDATIONS DU CHSCT ... 53
Les INB sont définies par l’article L. 593-2 du code de l’environnement. Il s’agit notamment :

1° Des réacteurs nucléaires ;
2° Des installations, répondant à des caractéristiques définies par décret en Conseil d’État, de préparation, d’enrichissement, de fabrication, de traitement ou d’entreposage de combustibles nucléaires ou de traitement, d’entreposage ou de stockage de déchets radioactifs ;
3° Des installations contenant des substances radioactives ou fissiles et répondant à des caractéristiques définies par décret en Conseil d’État ;
4° Des accélérateurs de particules répondant à des caractéristiques définies par décret en Conseil d’État ;
5° Des centres de stockage en couche géologique profonde de déchets radioactifs mentionnés à l’article L. 542-10-1.

Ces installations sont autorisées par décret pris après avis de l’Autorité de sûreté nucléaire (ASN) et après enquête publique. Leurs conception, construction, fonctionnement et démantèlement sont réglementés avec pour objectif de prévenir et limiter les risques et inconvénients que l’installation peut présenter pour les intérêts mentionnés à l’article L. 593-1 du code de l’environnement.

Conformément à l’article L. 125-15 du code de l’environnement, EDF exploitant des INB sur le site de Chooz a établi le présent rapport concernant :

1° Les dispositions prises pour prévenir ou limiter les risques et inconvénients que l’installation peut présenter pour les intérêts mentionnés à l’article L. 593-1 ;
2° Les incidents et accidents, soumis à obligation de déclaration en application de l’article L. 591-5, survenus dans le périmètre de l’installation ainsi que les mesures prises pour en limiter le développement et les conséquences sur la santé des personnes et l’environnement ;
3° La nature et les résultats des mesures des rejets radioactifs et non radioactifs de l’installation dans l’environnement ;
4° La nature et la quantité de déchets entreposés dans le périmètre de l’installation ainsi que les mesures prises pour en limiter le volume et les effets sur la santé et sur l’environnement, en particulier sur les sols et les eaux.

Conformément à l’article L. 125-16 du code de l’environnement, le rapport est soumis au Comité d’Hygiène, de Sécurité et des Conditions de Travail (CHSCT) de l’installation nucléaire de base, qui peut formuler des recommandations. Ces recommandations sont, le cas échéant, annexées au document aux fins de publication et de transmission.

Le rapport est rendu public. Il est également transmis à la Commission locale d’information (CLI) et au Haut Comité pour la Transparence et l’Information sur la Sécurité Nucléaire (HCTISN).
Le site de Chooz se situe dans le département des Ardennes (08). Il est implanté sur la rive droite de la Meuse pour la centrale de Chooz A et la rive gauche pour le Centre Nucléaire de Production d’Electricité (CNPE) de Chooz B. L’ensemble des installations se trouve sur le territoire de la commune de Chooz, à 56 km au nord-est de Charleville-Mézières.
La centrale de Chooz A s'étend sur une surface de 20 hectares et le CNPE de Chooz B sur une superficie de 134 hectares.

L'ensemble des installations regroupe :

- deux unités de production d'électricité en fonctionnement, le CNPE de Chooz B, dont la création a été autorisée par les décrets du 9 octobre 1984 et du 18 février 1986, modifiés par le décret du 18 octobre 1993. Ces deux unités sont de conception identique (palier N4) du type Réacteur à Eau Pressurisée (REP) d'une puissance électrique de 1 450 MW chacune. Ces deux réacteurs constituent les installations nucléaires de base n°139 et 144 ;

La centrale de Chooz accueille également une expérience de recherche de renommée internationale, pilotée par le Centre National de Recherche Scientifique (CNRS), le laboratoire « Neutrinos » de Chooz.

Les installations nucléaires de base de Chooz sont placées sous la responsabilité d'un directeur, qui s'appuie sur un comité de direction constitué de personnes en charge du management opérationnel des différents métiers du CNPE.

INSTALLATION

<table>
<thead>
<tr>
<th>TYPE D'INSTALLATION</th>
<th>NATURE DE L'INSTALLATION</th>
<th>N° INB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrale nucléaire</td>
<td>Chooz B1</td>
<td>139</td>
</tr>
<tr>
<td>Centrale nucléaire</td>
<td>Chooz B2</td>
<td>144</td>
</tr>
<tr>
<td>Chooz A - Centrale REP</td>
<td>Installation en démantèlement</td>
<td>163</td>
</tr>
</tbody>
</table>
2 LA PRÉVENTION ET LA LIMITATION DES RISQUES ET INCONVÉNIENTS

2.1 DÉFINITIONS ET OBJECTIFS : RISQUES, INCONVÉNIENTS, INTÉRÊTS PROTÉGÉS

Le présent rapport a notamment pour objectif de présenter « les dispositions prises pour prévenir ou limiter les risques et inconvénients que l’installation peut présenter pour les intérêts mentionnés à l’article L. 593-1 » (article L. 125-15 du code de l’environnement). Les intérêts protégés sont la sécurité, la santé et la salubrité publiques ainsi que la protection de la nature et de l’environnement.

L’autorisation de création d’une installation nucléaire ne peut être délivrée que si l’exploitant démontre que les dispositions techniques ou d’organisation prises ou envisagées aux stades de la conception, de la construction et de l’exploitation ainsi que les principes généraux proposés pour le démantèlement sont de nature à prévenir ou à limiter de manière suffisante les risques ou inconvénients que l’installation présente pour les intérêts protégés. L’objectif est d’atteindre, compte tenu de l’état des connaissances, des pratiques et de la vulnérabilité de l’environnement, un niveau des risques et inconvénients aussi faible que possible dans des conditions économiquement acceptables.

Afin d’atteindre un niveau de risques aussi faible que possible, l’exploitant prévoit des mesures prises pour éviter ces risques ou à défaut des mesures visant à les réduire ou les compenser. Les inconvénients incluent, d’une part, les impacts occasionnés par l’installation sur la santé et l’environnement du fait des prélèvements d’eau et rejets, et, d’autre part, les nuisances qu’elle peut engendrer, notamment par la dispersion de micro-organismes pathogènes, les bruits et vibrations, les odeurs ou l’envol de poussières. La démonstration de la maîtrise des inconvénients est portée par l’étude d’impact.
2.2 LA PRÉVENTION ET LA LIMITATION DES RISQUES

2.2.1. LA SÉCURITÉ NUCLÉAIRE

L'article L. 591-1 du code de l'environnement définit « la sécurité nucléaire [comme comprenant] la sûreté nucléaire, la radioprotection, la prévention et la lutte contre les actes de malveillance ainsi que les actions de sécurité civile en cas d'accident. »

La priorité du groupe EDF est d’assurer la sûreté nucléaire, en garantissant le confinement de la matière radioactive. La mise en œuvre des dispositions décrites dans le paragraphe ci-dessous (La sûreté nucléaire) permet la protection des populations. Par ailleurs, EDF apporte sa contribution à la sensibilisation du public aux risques, en particulier en 2016 à travers la campagne de renouvellement des comprimés d'iode auprès des riverains.

La sûreté nucléaire est l’ensemble des dispositions techniques et des mesures d’organisation relatives à la conception, à la construction, au fonctionnement, à l’arrêt et au démantèlement des installations nucléaires de base ainsi qu’au transport des substances radioactives, prises en vue de prévenir les accidents ou d’en limiter les effets. Ces dispositions et mesures, intégrées à la conception et la construction, sont renforcées et améliorées tout au long de l’exploitation de l’installation nucléaire.

Les trois fonctions de la sûreté nucléaire :

- contrôler et maîtriser à tout instant la puissance des réacteurs ;
- refroidir le combustible en fonction de l’énergie produite grâce aux systèmes prévus en redondance pour pallier les défaillances ;
- confiner les produits radioactifs derrière trois barrières successives.

Ces trois fonctions ou « barrières de sûreté » sont des obstacles physiques à la dispersion des produits radioactifs dans l’environnement. Les sources des produits radioactifs ont des origines diverses, dont l’une d’elle est le combustible placé dans le cœur du réacteur. Les trois barrières physiques qui séparent le combustible de l’atmosphère sont :

- la gaine du combustible ;
- le circuit primaire ;
- l’enceinte de confinement en béton du bâtiment réacteur.

L’étanchéité de ces barrières est mesurée en permanence pendant le fonctionnement de l’installation, et fait l’objet d’essais périodiques. Les critères à satisfaire sont inscrits dans le référentiel de sûreté (voir référentiel des règles d’exploitation strictes et rigoureuses) approuvé par l’Autorité de sûreté nucléaire (ASN).

La sûreté nucléaire repose également sur deux principes majeurs :

- la « défense en profondeur », qui consiste à installer plusieurs lignes de défense successives contre les défaillances possibles des matériels et des hommes ;
- la « redondance des circuits », qui repose sur la duplication des systèmes de sûreté pour disposer toujours d’un matériel disponible pour conduire l’installation.

Enfin, l’exigence en matière de sûreté nucléaire s’appuie sur plusieurs fondamentaux, notamment :

- la robustesse de la conception des installations ;
- la qualité de l’exploitation grâce à un personnel formé en permanence, grâce aux organisations et à l’application de procédures strictes (à l’image de ce que font d’autres industries de pointe), grâce enfin à la « culture de sûreté », véritable état d’esprit conditionnant les attitudes et les pratiques.

Cette « culture de sûreté » est notamment développée par la formation et l’entraînement du personnel EDF et des entreprises prestataires amenées à intervenir sur les installations. Pour conserver en permanence les meilleures performances en matière de sûreté nucléaire, les centrales ont mis en place un contrôle interne présent à tous les niveaux.

Pour assurer la mission interne de vérification, le directeur du CNPE s’appuie sur un service sûreté qualité. Ce service comprend des ingénieurs sûreté et des auditeurs qui
LES TROIS BARRIÈRES DE SÛRETÉ

LES TROIS BARRIÈRES DE SÛRETÉ

assurent, dans le domaine de la sûreté et de la qualité, les missions relevant de la vérification, de l'analyse et du conseil assistance auprès des services opérationnels.

Par ailleurs, les installations nucléaires sont soumises aux contrôles externes permanents de l’ASN. Celle-ci, compétente pour autoriser la mise en service d’une centrale nucléaire, veille également au respect des règles de sûreté et de radioprotection en cours d’exploitation et de démantèlement.

DES RÈGLES D’EXPLOITATION STRICTES ET RIGOUREUSES :

L’exploitation des réacteurs nucléaires en fonctionnement est régie par un ensemble de textes, appelé le « référentiel », décrivant tant les exigences de conception de l’installation que celles de l’exploitation. Sans être exhaustif, les documents majeurs de ce référentiel sont :

- le Rapport De Sûreté (RDS) qui décrit l’installation et les hypothèses de conception prises pour limiter les conséquences en cas d’accident ;
- les Règles Générales d’Exploitation (RGE) qui précisent les spécifications techniques à respecter, les essais périodiques à effectuer et la conduite à tenir en cas d’incident ou d’accident. Elles tiennent compte de l’état de l’installation et sont approuvées par l’ASN ;
- les Spécifications Techniques d’Exploitation (STE) qui listent les matériels devant être disponibles pour exploiter l’installation et décrivent la conduite à tenir en cas d’indisponibilité de l’un d’eux ;
- le programme d’essais périodiques à réaliser pour chaque matériau nécessaire à la sûreté et les critères à satisfaire pour s’assurer de leur bon fonctionnement ;
- l’ensemble des procédures à suivre en cas d’incident ou d’accident pour la conduite de l’installation ;
- l’ensemble des procédures à suivre lors du redémarrage après changement du combustible et la surveillance du comportement du combustible pendant le cycle ;

Le cas échéant, l’exploitant déclare à l’ASN, sous forme d’événements significatifs pour la sûreté, les éventuels non-respects aux référentiels réglementaires, ce qui constitue une forme de mesure d’évaluation de leur mise en œuvre.

Pour l’installation en déconstruction, les dispositions applicables pour la sûreté d’exploitation sont définies dans les Règles Générales de Surveillance et d’Entretien (RGSE), version du 08/10/2015. Ces RGSE précisent les spécifications techniques à respecter, les essais périodiques à effectuer et la conduite à tenir en cas d’incident ou d’accident. Elles tiennent compte de l’état de l’installation au fur et à mesure de sa déconstruction et sont approuvées par l’Autorité de sûreté nucléaire.
2.2.2. LA MAÎTRISE DU RISQUE INCENDIE EN LIEN AVEC LES SERVICES DÉPARTEMENTAUX D’INCENDIE ET DE SECOURS

Depuis de nombreuses années, une organisation est mise en place par EDF pour prévenir le risque incendie. Elle est améliorée et contrôlée en permanence.

Elle s’appuie sur les conseils en matière de prévention d’un officier de sapeur-pompier professionnel (OSPP), mis à disposition du Centre nucléaire de production d’électricité (CNPE) par le Service départemental d’incendie et de secours (SDIS), et sur des équipes d’intervention composées de salariés du CNPE et de l’entreprise partenaire chargée du gardiennage du site.

Pour lutter contre l’incendie, EDF déploie une organisation interne (équipes d’intervention), complétée par les moyens du SDIS.

Le choix d’organisation d’EDF dans le domaine de l’incendie s’appuie sur les trois grands principes de la prévention, la surveillance et l’intervention :

- **La prévention** a pour objectif d’éviter la naissance d’un incendie et de limiter son extension s’il a pris naissance (voir schéma page 11). Dès l’origine, l’installation a été conçue et construite pour maîtriser le risque incendie et éviter sa propagation. Grâce à cette conception des locaux, le feu, s’il se déclenche, est limité au local concerné. Il ne menacera pas les autres matériels installés dans les secteurs voisins, préservant ainsi la sûreté de l’installation. L’évolution constante de la réglementation, des procédures d’intervention et des matériaux nécessite une réévaluation des mesures préventives.

- **La surveillance** est assurée lors des rondes du personnel de l’équipe conduite, associée à une sensibilisation de chaque salarié de la centrale afin qu’il signale et alerte rapidement en cas de suspicion d’échauffement de matériel ou de départ de feu. Des détecteurs incendie sont largement répartis dans les installations pour avertir de l’apparition de fumées dans les locaux. L’opérateur de conduite, dès réception des premières informations données par le témoin ou la détection, déclenche l’alerte et mobilise l’organisation adaptée.

- **L’intervention** est déclenchée par un opérateur depuis la salle de commande. La mission des équipes EDF consiste à reconnaître l’environnement autour du sinistre, porter secours à un éventuel blessé, assurer la surveillance du feu, mettre en œuvre les moyens d’extinction si cela n’engage pas leur sécurité, et surtout accueillir, guider et renseigner les sapeurs-pompiers à leur arrivée sur le site. Si la préparation de la lutte contre le feu est de la responsabilité de l’exploitant, la lutte active est assurée par les secours externes.
En 2016, le site de Chooz n’a enregistré aucun événement incendie marquant. Trois dégagements de fumée se sont néanmoins produits sur les installations. Leur bonne gestion par les équipes de la centrale leur a permis de conserver leur statut d’événements incendie mineurs pour le site.

La formation, les exercices et les entraînements, le travail de coopération entre les équipes d’EDF, l’entreprise ayant la garde chargée du gardiennage et les secours externes sont autant de façons de se préparer à maîtriser le risque incendie.

C’est dans ce cadre que le CNPE de Chooz poursuit une coopération étroite avec le SDIS du département des Ardennes.

Les conventions triennales « partenariat et couverture opérationnelle » entre le SDIS, le CNPE et la Préfecture des Ardennes ont été révisées et signées le 27 mars 2015.

Initié dans le cadre d’un dispositif national, un OSPP (Officier sapeur-pompier professionnel) est présent sur le site depuis 2007. Son rôle est de faciliter les relations entre le CNPE et le SDIS, de promouvoir les actions de prévention de l’incendie, d’appuyer et de conseiller le Directeur d’Unité et, enfin, d’intervenir dans la formation du personnel ainsi que dans la préparation et la réalisation d’exercices internes à la centrale.

Deux exercices à dimension départementale ont eu lieu sur les installations en 2016. Ils ont permis d’échanger des pratiques, de tester deux scénarios incendie et de conforter les connaissances des organisations respectives entre les équipes EDF et celles du SDIS.

Le CNPE a initié et encadré 46 exercices incendie, dont 20 manœuvres à dimension réduite avec la garde opérationnelle du CNPE et 2 manœuvres de grande ampleur impliquant l’engagement des moyens des sapeurs-pompiers des Centres d’Incendie et de Secours limitrophes. Les thématiques sont préalablement définies de manière commune.

116 visites des installations impliquant les personnels de la « Garde Opérationnelle » des pompiers dédiée au CNPE ont été organisées et 32 nouvelles recrues ont visité les installations.

L’OSPP et le SDIS assurent un soutien technique et un appui dans le cadre de leurs compétences de conseillers techniques du Directeur d’Unité (Conseil technique dans le cadre de la mise à jour du plan d’établissement répertorié).

2.2.3. LA MAÎTRISE DES RISQUES LIÉS À L'UTILISATION DES FLUIDES INDUSTRIELS

L'exploitation d'une centrale nucléaire nécessite l'utilisation de fluides industriels (liquides ou gazeux) transportés, sur les installations, dans des tuyauteries identifiées sous le vocable générique de « Substance dangereuse » (tuyauteries auparavant appelées TRICE pour « Toxique et/ou Radiologique, Corrosif et Explosif »). Les fluides industriels (soude, acide, ammoniac, huile, fuel, morpholine, acétylène, oxygène, hydrogène...), selon leurs caractéristiques chimiques et physiques, peuvent présenter des risques et doivent donc être stockés, transportés et utilisés avec précaution.

Trois produits sont plus particulièrement sensibles que d'autres à l'incendie et/ou l'explosion : l'hydrogène, l'acétylène et l'oxygène. Avant leur utilisation, ces trois gaz sont stockés dans des bonbonnes situées dans des zones de stockages appropriées. Ainsi, les « parcs à gaz » construits à proximité et à l'extérieur des salles de machines de chaque réacteur accueillent de l'hydrogène. Des tuyauteries permettent ensuite de le transporter vers le lieu où il sera utilisé. Pour l'hydrogène, il s'agira de le véhiculer vers l'alternateur pour refroidir celui-ci ou dans les bâtiments auxiliaires nucléaires pour être mélangé à l'eau du circuit primaire afin d’en garantir les paramètres chimiques.

Pour encadrer l'utilisation de ces gaz, les exploitants des centrales nucléaires d’EDF appliquent les réglementations majeures suivantes :

- l’arrêté INB et la décision n° 2014-DC-0417 de l'Autorité de sûreté nucléaire du 28 janvier 2014 relative aux règles applicables aux installations nucléaires de base (INB) pour la maîtrise des risques liés à l’incendie ;
- le code du travail aux articles R. 4227-1 à R. 4227-57 (réglementation ATEX pour ATMosphere Explosive) qui définit les dispositions de protection des travailleurs contre la formation d’atmosphère explosive. Cette réglementation s’applique à toutes les activités, industrielles ou autres ;
- les textes relatifs aux équipements sous pression :
 - le décret 99-1046 du 13 décembre 1999 modifié relatif aux équipements sous pression,
 - l’arrêté du 15 mars 2000 modifié relatif à l’exploitation des équipements sous pression,
 - l’arrêté du 30 décembre 2015 relatif aux équipements sous pression nucléaires et l’arrêté du 10 novembre 1999 modifié relatif aux équipements sous pression nucléaires,

Depuis l’arrêté RTGE de 1999 (Réglementation Technique Générale vis-à-vis des nuisances et des risques externes résultant de l’Exploitation des INB), entre 2000 et la fin de 2006, date limite donnée aux exploitants pour respecter la loi, de nombreux et importants chantiers de mise en conformité ont été réalisés sur le parc nucléaire français.

Plus de 160 millions d’euros ont ainsi été investis. En parallèle, un important travail a été engagé sur les tuyauteries « substance dangereuse ». Le programme de maintenance sur les tuyauteries de l’îlot nucléaire et sur la robinetterie a été étendu à l’ensemble des tuyauteries des installations. Cette extension a fait l’objet, par EDF, d’une doctrine déployée à partir de fin 2007 sur toutes les centrales. Elle demande :

- la signalisation et le repérage des tuyauteries « substance dangereuse », avec l’établissement de schémas à remettre aux Services Départementaux d’Incendie et de Secours (SDIS) ;
- la maintenance et le suivi de l’état de tous les matériels, sur l’ensemble des installations, dans le cadre de l’élaboration d’un programme local de maintenance préventive.

2.2.4.
LES ÉVALUATIONS COMPLÉMENTAIRES DE SÛRETÉ SUITE À L’ACCIDENT DE FUKUSHIMA

UN RETOUR D’EXPÉRIENCE NÉCESSAIRE SUITE À L’ACCIDENT DE FUKUSHIMA

NOYAU DUR
voir le glossaire p. 52
EDF a d’ores et déjà engagé un vaste programme sur plusieurs années qui consiste notamment à :

- vérifier le bon dimensionnement des installations aux agressions naturelles, car c’est le retour d’expérience majeur de l’accident de Fukushima ;
- doter l’ensemble des sites de nouveaux moyens d’abord mobiles (phase 1) puis fixes (phase 2) permettant d’augmenter l’autonomie en eau et en électricité ;
- doter le parc en exploitation d’une Force d’Action Rapide Nucléaire (FARN) pouvant intervenir sous 24 heures sur un site de 6 réacteurs (opérationnelle depuis 2015) ;
- renforcer la robustesse aux situations de perte de sources électriques totale par la mise en place sur chaque tranche d’un nouveau Diesel d’Ultime Secours (DUS) robuste aux agresseurs extrêmes ;
- intégrer la situation de perte totale de la source froide sur l’ensemble du site dans la démonstration de sûreté ;
- améliorer la sûreté des entreposages des assemblages combustible ;
- améliorer la gestion de crise notamment par la mise en place des nouveaux Centres de Crise Locaux (CCL) ;
- renforcer l’entrainement des équipes de conduite en quart face à des situations extrêmes.

Ce programme a consisté dans un premier temps à mettre en place un certain nombre de mesures à court terme. Cette première phase, qui s’est achevée en 2015 a permis de déployer les moyens suivants :

- groupe électrogène de secours (complémentaire au turboalternateur de secours existant) pour assurer la réalimentation électrique de l’éclairage de secours de la salle de commande, du contrôle commande minimal ainsi que de la mesure niveau de la piscine de stockage du combustible usé ;
- appoint en eau borée de sauvegarde en arrêt de tranche (pompe mobile) sur le palier 900 MWe (les réacteurs 1300 et 1450 MWe en sont déjà équipés) ;
- mise en œuvre de « piquages » permettant l’injection d’eau de refroidissement de secours et de connexions électriques réalisée en 2014 et achevée en 2015 ;
- la poursuite des divers travaux de protection du site contre les inondations externes et notamment la mise en place de seuils au niveau des différents accès. La mise en place de ces seuils a été réalisée en 2016.

EDF a transmis à l’Autorité de sûreté nucléaire les réponses aux prescriptions de la décision ASN n° 2014-DC-0399 du 21 janvier 2014. EDF a respecté toutes les échéances des réponses prescrites dans la décision.

Mise en place opérationnelle de la Force d’Action Rapide Nucléaire (300 personnes).

Ce programme est complété par la mise en œuvre de la phase 2 jusqu’en 2021 qui permettra d’améliorer d’abord la couverture des situations de perte totale en eau et en électricité. Cette phase de déploiement consiste notamment à la mise en œuvre des premiers moyens fixes du noyau dur (Diesel d’Ultime Secours, source d’eau ultime).

Le site de Chooz a engagé son plan d’actions Post Fukushima conformément aux actions engagées par EDF. Depuis 2011, à Chooz, des travaux ont été réalisés et se poursuivent pour respecter les prescriptions techniques de l’ASN, avec notamment :

- l’installation de diesels de secours intermédiaires dans l’attente du raccordement des deux DUS sur le site de Chooz. La construction des DUS a débuté en 2016. Le raccordement de ces diesels est prévu au plus tard pour fin 2018 ;
- la mise en place de « piquages » permettant l’injection d’eau de refroidissement de secours et de connexions électriques réalisée en 2014 et achevée en 2015 ;
- la poursuite des divers travaux de protection du site contre les inondations externes et notamment la mise en place de seuils au niveau des différents accès. La mise en place de ces seuils a été réalisée en 2016.

EDF a transmis à l’Autorité de sûreté nucléaire les réponses aux prescriptions de la décision ASN n° 2014-DC-0399 du 21 janvier 2014. EDF a respecté toutes les échéances des réponses prescrites dans la décision.
2.2.5.
L’ORGANISATION DE LA CRISE

Pour faire face à des situations de crise ayant des conséquences potentielles ou réelles sur la sûreté nucléaire ou la sécurité classique, une organisation spécifique est définie pour le CNPE de Chooz. Elle identifie les actions à mener et la responsabilité des acteurs. Validée par l’Autorité de sûreté nucléaire (ASN) et le Haut Fonctionnaire de Défense et de Sécurité dans le cadre de leurs attributions réglementaires respectives, cette organisation est constituée du Plan d’urgence interne (PUI) applicable à l’intérieur du périmètre du site en cohérence avec le Plan particulier d’intervention (PPI) de la Préfecture des Ardennes. En complément de cette organisation globale, les Plans d’appui et de mobilisation (PAM) permettent de traiter des situations complexes et d’anticiper leur dégradation.

Depuis 2012, la centrale EDF de Chooz dispose d’un nouveau référentiel de crise, et ce faisant de nouveaux Plans d’urgence interne (PUI) et Plans d’appui et de mobilisation (PAM). Si elle évolue suite au retour d’expérience vers une standardisation permettant notamment de mieux intégrer les dispositions organisationnelles issues du retour d’expérience de l’accident de Fukushima, l’organisation de crise reste basée sur l’alerte et la mobilisation des ressources pour :

➡ maîtriser la situation technique et en limiter les conséquences ;
➡ protéger, porter secours et informer le personnel ;
➡ informer les pouvoirs publics ;
➡ communiquer en interne et à l’externe.

Ce nouveau référentiel permet :

guided by clarifying the organization of crisis, making it more modular and graduated, with the Plan de Sûreté Protection (PSP) and eight Plans d’Appuis et de Mobilisation (PAM) :
• Gréement pour Assistance Technique (GAT) ;
• Secours Aux Victimes ou Événement de Radioprotection (SAVER) ;
• Environnement (ENV) ;
• Événement de Transport de Matières Radioactives (TMR) ;
• Événement Sanitaire ;
• Pandémie ;
• Perte du Système d’Information ;
• Alertes Protection (AP).

Pour tester l’efficacité de son dispositif d’organisation de crise, le CNPE de Chooz réalise des exercices de simulation au plan local. Certains exercices impliquent également le niveau national d’EDF. D’autres sollicitent aussi l’ASN et la préfecture.

En 2016, sur l’ensemble des installations nucléaires de base de Chooz, 11 exercices de crise mobilisant les personnels d’astreinte ont été réalisés. Ces exercices demandent la participation totale ou partielle des équipes de crise et permettent de tester les dispositifs d’alerte, la gestion technique des situations de crise et les interactions entre les intervenants. Par ailleurs, ils mettent en avant la coordination des différents postes de commandement, la gestion anticipée des mesures et la mobilisation adaptée des équipes.

Certains scénarios se déroulent à partir du simulateur, réplique à l’identique d’une salle de commande.

Téléchargez sur edf.fr la note d’information : La maîtrise des risques sur les centrales nucléaires d’EDF.
TABLEAU RÉCAPITULATIF DES EXERCICES

<table>
<thead>
<tr>
<th>Date</th>
<th>Exercice</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-janv</td>
<td>Plan d’Urgence Interne Sûreté Aléas Climatiques et Assimilés</td>
</tr>
<tr>
<td>01-mars</td>
<td>Exercice National avec relève avec la Force d’Action Rapide du Nucléaire (FARN)</td>
</tr>
<tr>
<td>24-mars</td>
<td>Plan d’Appui et de Mobilisation Environnement sur le site de Chooz A</td>
</tr>
<tr>
<td>14-avr</td>
<td>Plan d’Urgence Interne Toxique sur la base de rejets d’ammoniac</td>
</tr>
<tr>
<td>27-juin</td>
<td>Exercice de simulation d’une inondation</td>
</tr>
<tr>
<td>20-août</td>
<td>Exercice de mobilisation des équipiers d’astreinte hors heures ouvrables</td>
</tr>
<tr>
<td>01-sept</td>
<td>Plan d’Urgence Interne Sûreté Radiologique avec regroupement complet du personnel</td>
</tr>
<tr>
<td>30-sept</td>
<td>Plan d’Urgence Interne Incendie Hors Zone Contrôlée avec le SDIS 08 et gréement sur tranche</td>
</tr>
<tr>
<td>03-nov</td>
<td>Plan d’Urgence Interne Sûreté Aléas Climatiques et Assimilés avec activation local de repli</td>
</tr>
<tr>
<td>05-nov</td>
<td>Exercice de mobilisation des équipiers d’astreinte hors heures ouvrables</td>
</tr>
<tr>
<td>09-déc</td>
<td>Plan d’Urgence Interne de secours à victimes avec le SAMU</td>
</tr>
</tbody>
</table>

ORGANISATION DE CRISE NUCLÉAIRE

PUI ET PPI, ORGANISATION LOCALE DE CRISE

Plan d’Urgence Interne (PUI)

- **Le Directeur du site**
 - appuyé par l’Organisation Nationale de Crise EDF (ONC)

Plan Particulier d’Intervention (PPI)

- **Le Préfet**
 - conseillé par l’ASN appuyé par la DSC (Direction de la Sécurité Civile)

missions

- Décider et agir à l’intérieur du site
 - Alerter et mobiliser les ressources
 - Maîtriser la situation et limiter les conséquences
 - Protéger, porter secours, informer le personnel
 - Informer et communiquer avec les pouvoirs publics et les médias

- Décider et agir à l’extérieur du site
 - Alerter et protéger les populations
 - Prévoir les mesures et les moyens de secours à mettre en œuvre pour faire face à l’événement
 - Informer les populations, les médias et les élus locaux
2.3 LA PRÉVENTION ET LA LIMITATION DES INCONVÉNIENTS

2.3.1. LES IMPACTS : PRÉLÈVEMENTS ET REJETS

Définition des impacts à venir

2.3.1.1. LE CONTRÔLE DES REJETS ET LA SURVEILLANCE DE L’ENVIRONNEMENT

La conformité à la réglementation en vigueur, la prévention des pollutions et la recherche d’amélioration continue de notre performance environnementale constituent l’un des dix engagements de la politique environnementale d’EDF.

Dans ce cadre, tous les sites nucléaires d’EDF disposent d’un système de management de l’environnement certifié ISO 14001.

Leur maîtrise des événements susceptibles d’avoir un impact sur l’environnement repose sur une application stricte des règles de prévention (bonne gestion des effluents, de leur traitement, de leur entreposage, de leur contrôle avant rejet, etc.) et sur un système complet de surveillance de l’environnement autour des centrales nucléaires.

Pour chaque centrale, le dispositif de contrôle et de surveillance réguliers de l’environnement représente environ 20 000 mesures annuelles, réalisées tant dans l’écosystème terrestre et dans l’air ambiant que dans les eaux de surface recevant les rejets liquides et dans les eaux souterraines.

Le programme de surveillance est établi conformément à la réglementation. Il fixe la nature, les fréquences, la localisation des différents prélèvements, ainsi que la nature des analyses à faire. Sa stricte application fait l’objet de contrôles programmés ou inopinés de l’ASN qui mène des expertises indépendantes.

Ce dispositif est complété par des études annuelles radio écologiques et hydro biologiques d’impact sur les écosystèmes, confiées par EDF à des laboratoires externes qualifiés (Institut de Radioprotection et de Sûreté Nucléaire, Cemagref, Ifremer, Onema, laboratoires universitaires et privés, etc.) avec, tous les dix ans, une étude radio écologique plus complète. La grande variété d’analyses effectuées lors de ces études permet de connaître très finement l’impact des installations sur l’environnement, témoin de la qualité d’exploitation des centrales.

SURVEILLANCE DE L’ENVIRONNEMENT

CONTRÔLES QUOTIDIENS, HEBDOMADAIRES ET MENSUELS

Surveillance des poussières atmosphériques et de la radioactivité ambiante

Surveillance de l’eau

Surveillance du lait

Surveillance de l’herbe
2.3.1.2.
LES REJETS D’EFFLUENTS RADIOACTIFS LIQUIDES

Le fonctionnement d’une centrale nucléaire génère des effluents radioactifs liquides provenant du circuit primaire et des circuits annexes de l’îlot nucléaire. Les principaux composés radioactifs contenus dans les rejets radioactifs liquides sont le tritium, le carbone 14, les iodes et les produits de fission ou d’activation.

Chaque centrale est équipée de dispositifs de collecte, de traitement et de contrôle des effluents avant rejet. Par ailleurs, une organisation est mise en œuvre pour assurer une gestion optimisée des effluents visant notamment à :

- réduire à la source la production d’effluents, notamment par le recyclage ;
- éliminer les rejets des substances radioactives ou chimiques au moyen de traitements appropriés ;
- valoriser, si possible, les résidus de traitement.

Tous les effluents produits sont collectés, puis traités selon leur nature, pour retenir l’essentiel de la radioactivité. Les effluents traités sont ensuite acheminés vers des réservoirs d’entreposage où ils sont analysés sur les plans radioactif et chimique avant d’être rejétés dans le strict respect de la réglementation.

Pour minimiser l’impact sur l’environnement de ses activités, EDF a mis en œuvre une démarche volontariste de traitement de ses effluents radioactifs pour réduire l’activité rejetée à une valeur aussi basse que raisonnablement possible.
2.3.1.3. LES REJETS D’EFFLUENTS RADIOACTIFS À L’ATMOSPHÈRE

Il existe deux sources d’effluents gazeux radioactifs : ceux provenant des circuits de l’installation véhiculant des effluents radioactifs et ceux issus des systèmes de ventilation des bâtiments situés en zone nucléaire. Les rejets d’effluents contiennent les gaz rares, le tritium, le carbone 14, les iodes et d’autres produits de fission ou d’activation, émetteurs de rayonnements bêta et gamma. Cette dernière famille est constituée de radionucléides qui peuvent se fixer sur de fines poussières (aérosols).

Les effluents radioactifs gazeux provenant des circuits sont entreposés, un mois au minimum, dans des réservoirs prévus à cet effet et où des contrôles réguliers sont effectués. Durant ce temps d’entreposage la radioactivité décroît naturellement limitant de fait la quantité de radioactivité rejetée dans l’environnement. Avant leur rejet, les effluents subissent des traitements, dont la filtration qui permet de retenir une grande partie des poussières radioactives.

Les effluents gazeux issus de la ventilation des bâtiments forment aussi l’objet d’une filtration avant d’être contrôlés et rejétés. Les effluents gazeux sont rejétés dans l’atmosphère en continu, par une cheminée spécifique équipée de capteurs de mesure permanente de l’activité rejetée.

L’exposition des populations à ces rejets d’effluents radioactifs liquides et atmosphériques est plus de 100 fois inférieure à la limite réglementaire fixée, pour le public, dans le code de la santé publique (article R. 1333-8), à 1 mSv/an (Le sievert (Sv) est l’unité de mesure utilisée pour évaluer l’impact des rayonnements sur l’homme. 1 milliSievert (mSv) correspond à un millième de Sievert).

Pour les réacteurs en déconstruction, il n’y a pas de source d’effluents gazeux : les réacteurs et les capacités du circuit primaire (échangeurs) ayant véhiculé le CO\(_2\) radioactif sont maintenus en dépression. La mise en dépression est réalisée grâce à un filtre à très haute efficacité par un ventilateur déprimogène* dont le rejet à l’atmosphère est contrôlé en permanence.

* se dit d’un dispositif créant une dépression
2.3.1.4.
LES REJETS CHIMIQUES

Les rejets chimiques non radioactifs sont issus :

- des produits de conditionnement utilisés pour garantir l’intégrité des matériels contre la corrosion ;
- des traitements de l’eau contre le tartre, la corrosion ou le développement de micro-organismes ;
- de l’usure normale des matériaux (à noter que les matériaux en cuivre et en zinc ont été éradiqués à la suite du programme de remplacement des condenseurs en laiton).

Les produits chimiques utilisés à la centrale de Chooz

Les rejets chimiques sont composés par les produits utilisés pour conditionner l’eau des circuits, selon des paramètres physiques et chimiques requis pour obtenir un bon fonctionnement des installations. Sont utilisés :

- l’acide borique, pour sa propriété d’absorbeur de neutrons grâce au bore qu’il contient. Cette propriété du bore permet de contrôler le taux de fission du combustible nucléaire et, par conséquent, la réactivité du cœur du réacteur ;
- la lithine (ou oxyde de lithium) pour maintenir le pH (acidité) de l’eau du circuit primaire au niveau voulu et limiter la corrosion des métaux ;
- l’hydrargine, pour éliminer la majeure partie de l’oxygène dissous dans l’eau du circuit primaire et garantir l’intégrité des matériels contre la corrosion. L’hydrargine est aussi utilisée pour la mise en condition chimique de l’eau du circuit secondaire. Ce produit est employé avec d’autres permettant de maintenir au niveau voulu le pH de l’eau secondaire ;
- la morpholine qui permet de protéger les matériels contre la corrosion du circuit secondaire.

En revanche, pour le conditionnement physique et chimique des circuits en contact avec l’air, ce sont plutôt les phosphates qui sont employés, toujours pour maintenir au niveau voulu le pH de l’eau et limiter les phénomènes de corrosion.

Ces divers conditionnements génèrent, directement ou indirectement, la formation d’azote, d’hydrogène et d’ammoniaque, que l’on retrouve dans les rejets sous forme :

- d’ions ammonium ;
- de nitrates ;
- de nitrites.
Concernant les effluents de la partie non nucléaire de l’installation (eau et huile), leur conditionnement physique et chimique nécessite de réaliser des opérations de déminéralisation et de chloration, et par conséquent des rejets :

- de sodium ;
- de chlorures ;
- d’AOX composés organo-halogénés utilisés pour les traitements de lutte contre les micro-organismes (traitements biocides) des circuits. Les organohalogénés forment un groupe constitué de substances organiques (c’est-à-dire contenant du carbone) et qui comprend plusieurs atomes halogènes (chloro, fluor, brome ou iode). Ceux qui contiennent du chlore sont appelés « composés organochlorés » ;
- de THM ou trihalométhanes, auxquels appartient le chlorofluoréthane. Ils sont utilisés pour les traitements biocides des circuits et pour les traitements de chloration. Les trihalogénométhanes sont un groupe important et prédominant de sous-produits chlorés de désinfection de l’eau potable. Ils peuvent résulter de la réaction entre les matières organiques naturelles présentes dans l’eau et le chlore ajouté comme désinfectant ;
- de sulfates ;
- de phosphates ;
- de détergents.

2.3.1.5.
LES REJETS THERMIQUES

Les centrales nucléaires de production d’électricité prélevent de l’eau pour assurer leur refroidissement et alimenter les différents circuits nécessaires à leur fonctionnement. L’échauffement de l’eau prélevée, qui est ensuite restituée (en partie pour les unités de production avec aéroréfrigérants) au cours d’eau ou à la mer, doit respecter des limites fixées dans les arrêtés de rejets et de prise d’eau.

Pour faire face aux aléas climatiques extrêmes (grands froids et grands chauds), des hypothèses relatives aux températures maximales et minimales d’air et d’eau ont été intégrées dès la conception des centrales. Des procédures d’exploitation dédiées sont déployées et des dispositions complémentaires mises en place.

EDF et le réseau national de mesures de la radioactivité de l’environnement

Sous l’égide de l’ASN, un Réseau National de Mesures de la radioactivité de l’environnement (RNMM) a été créé en France. Son ambition est d’optimiser la collecte, la gestion et la valorisation des mesures de la radioactivité de l’environnement réalisées par des établissements publics, des services de l’État, des exploitants nucléaires, des collectivités territoriales ou des associations.

Le RNMM a trois objectifs :

- proposer une base de données commune pour contribuer à l’estimation des doses dues aux rayonnements ionisants auxquels la population est exposée ;
- proposer un portail Internet (www.measure-radioactivité.fr) pour assurer la transparence des informations sur la radioactivité de l’environnement en France ;
- disposer de laboratoires de mesures agréés.

Dans le cadre de la mise à disposition sur Internet de ces données de surveillance de la radioactivité dans l’environnement, les mesures de radioactivité de l’environnement des exploitants des sites sur lesquels s’exercent des activités nucléaires sont réalisées par des laboratoires agréés par l’Autorité de sûreté nucléaire (ASN).

Un bilan radioécologique de référence

Avant même la construction d’une installation nucléaire, EDF procède à un bilan radioécologique initial de chaque site qui constitue la référence pour les analyses ultérieures. En prenant pour base ce bilan radioécologique, l’exploitant, qui dispose de ses propres laboratoires, effectue en permanence des mesures de surveillance de l’environnement. Chaque année, il fait aussi réaliser par des laboratoires extérieurs qualifiés, une étude radioécologique et hydrobiologique pour suivre l’impact du fonctionnement de son installation sur les écosystèmes. Cette surveillance a pour objectif de s’assurer de l’efficacité de toutes les dispositions prises pour protéger l’Homme et l’environnement.

Pour chaque centrale, un texte réglementaire d’autorisation de rejets et de prise d’eau fixe la nature, la fréquence et le type de contrôles pour chaque paramètre (flux ou débit, concentration, activité, température…), tant au niveau des prélèvements d’eau que des rejets radioactifs, chimiques et thermiques.

Les équipes dédiées à la surveillance de l’environnement suivent des mesures réalisées en continu, comme pour la radioactivité ambiante, ou de façon périodique (quotidiennes, hebdomadaires ou mensuelles) sur les poussières atmosphériques, l’eau, le lait, l’herbe autour des centrales. En cas de rejets radioactifs dans l’environnement, des mesures de contrôle sont effectuées avant, pendant et immédiatement après ces rejets.

Chaque année, près de 10 000 mesures sont réalisées par les équipes du laboratoire environnement de la centrale de Chooz. Les résultats de ces mesures sont consignés dans des registres réglementaires transmis tous les mois à l’Autorité de sûreté nucléaire (ASN). Un bilan synthétique est publié chaque mois sur le site internet www.edf.fr/chooz.

Enfin, chaque année, le CNPE de Chooz, comme chaque centrale, met à disposition de la Commission locale d’information (CLI) et des pouvoirs publics, un rapport complet sur la surveillance de l’environnement.

En 2016, l’ensemble des résultats de ces analyses a montré que les rejets aquatiques et aériens, pour l’ensemble des installations en exploitation et en déconstruction, sont toujours restés conformes aux valeurs limites des autorisations réglementaires.

2.3.2. LES NUISANCES

À l’image de toute activité industrielle, et indépendamment du fait de produire de l’électricité avec un combustible d’uranium, les centrales nucléaires de production d’électricité doivent prendre en compte l’ensemble des nuisances qui peuvent être générées par leur exploitation. C’est le cas pour le bruit et les risques microbiologiques dus à l’utilisation de tours de refroidissement, comme pour le CNPE de Chooz qui utilise l’eau de la Meuse et des tours aéroréfrigérantes pour refroidir ses installations.

Réduire l’impact du bruit

L’arrêté du 7 février 2012 fixe les règles générales applicables à toutes les phases du cycle de vie des Installations nucléaire de base (INB) visant à garantir la protection des intérêts contre l’ensemble des inconvénients ou des risques que peuvent présenter les INB. Le titre IV sur la maîtrise des nuisances et de l’impact sur la santé et l’environnement fixe deux critères visant à limiter l’impact du bruit des INB.

Le premier critère, appelé « émergence sonore » et s’exprimant en Décibel A – dB(A) – est la différence de niveau sonore entre le niveau de bruit ambiant et le bruit résiduel. L’émergence sonore se calcule à partir de mesures réalisées aux premières habitations, en Zone à émergence réglementée (ZER).

Le deuxième critère, en vigueur depuis le 1er juillet 2013, concerne le niveau sonore mesuré en dB (A) en limite d’établissement de l’installation.
Pour répondre à ces exigences réglementaires et dans l’optique de réduire l’impact de ses installations, EDF mène depuis 1999 des études sur l’impact acoustique basées sur des mesures de longue durée dans l’environnement et sur les matériaux. Parallèlement, des modélisations en trois dimensions sont réalisées pour hiérarchiser les sources sonores les plus prépondérantes, et si nécessaire, définir des objectifs d’insonorisation.

Les principales sources de bruit des installations nucléaires sont généralement les réfrigérants atmosphériques pour les sites équipés, les stations de pompage, les salles des machines, les cheminées du bâtiment des auxiliaires nucléaires et les transformateurs.

Les valeurs d’émergence obtenues aux points situés en Zone à Émergence Réglementée du site de Chooz sont statistiquement conformes vis-à-vis de l’article 4.3.5 de l’arrêté INB du 7 février 2012. Les contributions des sources industrielles calculées en limite d’établissement sont inférieures à 60 dBA et les points de ZER associés présentent des valeurs d’émergences statistiquement conformes.

En cohérence avec l’approche « nuisance » proposée par EDF pour les points situés en Zone à Émergence Réglementée, les niveaux sonores mesurés en limite d’établissement du site de Chooz permettent d’atteindre les objectifs fixés par l’article 4.3.5 de l’arrêté INB du 7 février 2012.

Une nouvelle campagne de mesures acoustiques aura lieu au mois de juin 2017. Les premières conclusions seront connues au premier semestre 2018.

Surveiller les légionelles et les amibes

Les circuits de refroidissement à aéroréfrigérant des centrales nucléaires entraînent, par conception, un développement de légionelles et d’amibes, comme d’ailleurs tous les circuits de toutes les installations de même type. En effet, les légionelles et les amibes sont présentes dans l’eau des rivières et la température à l’intérieur des circuits de refroidissement entraîne leur développement. EDF réalise de nombreuses études et apporte des réponses aux questions de l’impact des légionelles et des amibes présentes dans l’eau, donc potentiellement dans le panache qui s’élève autour des sites disposant d’aéroréfrigérants. Parallèlement, des travaux sont menés sur l’impact des produits biocides utilisés pour éliminer ces légionelles et amibes.

Au CNPE de Chooz, pour respecter la valeur guide de concentration en légionelles de 5.105 UFC/L (Unité Formant Colonies par litre) définie par l’ASN, deux stations de traitement chimique de l’eau à la monochloramine ont été installées en 1999. Ce traitement est adapté à la lutte contre la prolifération des légionelles et des amibes.

Concernant le suivi microbiologique, aucune prolifération conséquente de légionelles n’est observée. Le résultat d’analyse le plus élevé est de 1 300 UFC/L en février 2016 sur l’unité de production 1. Pendant la période de traitement à la monochloramine, les résultats en légionelles sur les deux unités de production ont été < 100 UFC/L, ce qui confirme que l’application de la stratégie de traitement permet d’abattre la population de légionelles.

La concentration maximale de 100 Nf/L (Naegleria fowleri, une amibe pathogène) calculée en rivière à l’aval du CNPE de Chooz a été respectée. Les concentrations en Naegleria fowleri calculées en aval du CNPE sont très majoritairement inférieures à 30 Nf/L.

Au cours de l’année, l’ensemble des valeurs limites réglementaires de rejets a été respectée concernant les substances issues du traitement biocide (AOX, chlorures, sodium, ammonium, nitrites, nitrates, THM, CRT).
L’exploitant d’une installation nucléaire de base procède périodiquement au réexamen de son installation. Ce réexamen doit permettre d’apprécier la situation de l’installation au regard des règles qui lui sont applicables et d’actualiser l’appréciation des risques ou inconvénients que l’installation présente pour les intérêts mentionnés à l’article L. 593-1, en tenant compte notamment de l’état de l’installation, de l’expérience acquise au cours de l’exploitation, de l’évolution des connaissances et des règles applicables aux installations similaires.

LES CONCLUSIONS DES RÉEXAMENS PÉRIODIQUES

Le réexamen périodique vise à apporter la démonstration de la maîtrise des risques et inconvénients que les installations présentent vis-à-vis des intérêts à protéger.

Au terme de ces réexamens, le site de Chooz a transmis les Rapports de Conclusions de Réexamen (RCR) des tranches suivantes :

- de l’unité de production n°2, rapport transmis le 18/01/2010 ;
- de l’unité de production n°1, rapport transmis le 15/02/2011.

Ces rapports montrent que les objectifs fixés pour le réexamen périodique sont atteints.

Ainsi, à l’issue de ces réexamens effectués à l’occasion de leur 1ère Visite Décennale (VD1), la justification est apportée que les unités de production 1 et 2 sont aptes à être exploitées jusqu’à leur prochain réexamen avec un niveau de sûreté satisfaisant.

Par ailleurs, le rapport de conclusions de réexamen d’une installation permet de préciser, le cas échéant, le calendrier de mise en œuvre des dispositions restant à réaliser pour améliorer, si nécessaire, la maîtrise des risques et inconvénients présentés par l’installation.

Sur les unités de production 1 et 2, ces dispositions sont planifiées au-delà de l’année 2016.
2.5 LES CONTRÔLES

2.5.1. LES CONTRÔLES INTERNES

Les centrales nucléaires d’EDF disposent d’une filière de contrôle indépendante, présente à tous les niveaux, du CNPE à la Présidence de l’entreprise.

Les acteurs du contrôle interne sont les suivants :

→ l’Inspecteur Général pour la Sécurité Nucléaire et la Radioprotection (IGSNR) et son équipe conseillent le Président d’EDF, et lui apportent une appréciation globale sur la sûreté et la radioprotection à EDF. Chaque année, l’Inspection rédige un rapport mis en toute transparence à disposition du public, notamment sur le site Internet edf.fr ;

→ la Division Production Nucléaire (DPN) dispose pour sa part, d’une entité, l’Inspection Nucléaire (IN), composée d’une quarantaine d’inspecteurs expérimentés, de haut niveau, qui s’assure du bon état de sûreté des centrales. Ils apportent des conseils sur les évolutions à mettre en œuvre pour toujours progresser. Ces inspecteurs réalisent en moyenne une soixantaine d’inspections par an, y compris dans les unités d’ingénierie nucléaire nationales ;

→ la Division Production Nucléaire dispose également d’un Système d’Autorisation Interne (SAI) national. Ce dispositif créé en accord avec l’Autorité de sûreté nucléaire et contrôlé par elle, statue sur des demandes d’évolutions pérennes mineures dans les domaines des spécifications d’exploitation, du combustible et du cœur ;

→ chaque CNPE dispose de sa propre filière indépendante de contrôle. Le Directeur de la centrale s’appuie sur une mission Sûreté qualité audit. Cette mission apporte assistance et conseil, réalise des vérifications périodiques et des audits, mène des analyses pour détecter et apporter des solutions à des dysfonctionnements, analyse les enseignements tirés des événements d’autres sites et fait en sorte qu’ils ne surviennent pas sur leur site.

À la centrale de Chooz, cette mission est composée de 6 ingénieurs sûreté et 3 auditeurs réunis au sein du service Sûreté Qualité Audit (SQA). Leur travail consiste à évaluer le niveau de sûreté de l’exploitation par rapport aux référentiels réglementaires et prescriptifs EDF.
Deux niveaux de contrôle sont appliqués. A fréquence journalière, le service exploitant les réacteurs nucléaires et le service SQA croisent leurs propres évaluations de sûreté des tranches. Sur un autre aspect, tout au long de l’année, des audits sont réalisés par les Ingénieurs Sûreté et les auditeurs afin de vérifier la conformité aux règlements applicables aux centrales nucléaires ainsi qu’aux prescriptifs EDF. Ainsi, les ingénieurs sûreté et auditeurs ont réalisé, en 2016, plus de 110 opérations d’audit et de vérification.

L’installation en déconstruction de Chooz A a été audittée à deux reprises par la mission Sûreté Qualité Audit sur le thème déconstruction de la cuve, notamment sur la partie préparation de la piscine en vue des opérations de découpage sous eau.

L’ÉTAT DES INSTALLATIONS EN COURS DE DÉCONSTRUCTION

Le directeur du CNPE de Chooz est responsable de la sûreté nucléaire pour les activités de déconstruction de la centrale de Chooz A. Pour exercer sa responsabilité d’exploitant nucléaire sur ces installations, il s’appuie sur un groupe technique d’experts sûreté couvrant les domaines techniques de déconstruction, sûreté, radioprotection, déchets, environnement et qualité.

La déconstruction de la centrale de Chooz A est réalisée par la Direction des Projets Déconstruction et Déchets (DP2D) d’EDF, unité d’ingénierie et d’experts comprenant une équipe locale basée sur chacun des sites concernés.

La déconstruction d’une centrale nucléaire se déroule en trois étapes successives :

- une phase de mise à l’arrêt définitif (MAD) : le combustible est déchargé et les circuits sont vidangés. Les installations non nucléaires sont définitivement mises hors service et les systèmes et matériels, qui ne sont plus requis pour la sûreté, sont démontés. Cette phase est appelée « niveau 1 » ;

- une phase de démantèlement partiel : l’ensemble des bâtiments nucléaires hors réacteur est démonté. Le réacteur est isolé, confiné et mis sous surveillance. C’est la phase de « niveau 2 » ;

- une phase de démantèlement total : le bâtiment réacteur, les matériaux et équipements encore radioactifs sont complètement démontés, conditionnés et évacués ; le site peut être réutilisé. C’est la phase de « niveau 3 ».

Le décret n° 2007-1395 du 27 septembre 2007 a autorisé EDF à procéder aux opérations de mise à l’arrêt définitif et de démantèlement complet de l’INB 163. Le « niveau 1 » est désormais terminé et le chantier évolue vers le « niveau 2 ».

En 2016, le chantier d’installation pour la mise en eau de la piscine réacteur s’est poursuivi avec l’achèvement de la majeure partie des travaux électromécaniques dont les travaux d’étanchéité de la piscine et de la cuve du réacteur.

Les travaux de modification du génie civil de la caverne réacteur ainsi que le montage de la cellule de traitement et de conditionnement des futurs déchets Faible et Moyenne Activité issus du démantèlement de la cuve du réacteur sont en cours de finalisation.

LES AUTORISATIONS INTERNES MISES EN ŒUVRE EN 2016

Certaines opérations d’exploitation d’un réacteur sont soumises à l’accord préalable de l’Autorité de sûreté nucléaire (modifications de l’installation, démarrage du réacteur après certains arrêts…). Toutefois, la mise en place d’un dispositif d’« autorisations internes » permet d’assouplir ce principe.

Dans ce cadre, en 2014, en application de la décision n° 2008-DC-0106 de l’Autorité de sûreté nucléaire du 11 juillet 2008, deux systèmes d’autorisations internes (SAI) ont été mis en œuvre concernant respectivement :

En 2016, le système d’autorisations internes dans les domaines du cœur du réacteur et du combustible n’a pas été activé. Toutefois, la mise en œuvre de ce système d’autorisation interne reposant sur un domaine limité, trois dossiers ont été identifiés et présentés à l’Autorité de sûreté nucléaire, en novembre 2015, au titre du programme prévisionnel pour 2016 des dossiers cœur-combustible susceptibles de faire l’objet d’une application du système d’autorisations internes français.

Le système d’autorisation interne dans le domaine des modifications temporaires des spécifications techniques de l’exploitation a été sollicité 108 fois en 2016 au niveau du parc nucléaire français.

Pour le réacteur en déconstruction

Dans le cadre des opérations de déconstruction des réacteurs de première génération, EDF bénéficie d’un système d’autorisations internes approuvé par la Direction Générale de la Sûreté Nucléaire et de la Radioprotection (DGSNR) en février 2004.

Le système d’autorisation interne a fait l’objet de la décision ASN n° 2014-DC-0426 du 15/04/2014.
Dans ce cadre,

→ Une autorisation concernant le démantèlement du couvercle et des carquois crayons sources (dossier DR3) a été accordée en mars 2016. Elle portait sur :
 - le traitement et conditionnement du couvercle cuve,
 - la levée des internes supérieurs,
 - l’extraction et le conditionnement des carquois crayons sources,
 - l’agrandissement du SAS HR 5.

2.5.2. LES CONTRÔLES EXTERNES

Les Inspections de l’Agence internationale de l’énergie atomique (AIEA)

Les centrales nucléaires d’EDF sont régulièrement évaluées au regard des meilleures pratiques internationales par les inspecteurs et experts de l’Agence internationale de l’énergie atomique (AIEA) dans le cadre d’évaluations appelées OSART (Operational Safety Assesment Review Team - Revues d’évaluation de la sûreté en exploitation). La centrale de Chooz a connu une inspection de ce type en 2013, avec un suivi en 2015, afin de s’assurer de l’efficacité des actions menées en réponse aux recommandations de 2013.

Les inspections de l’Autorité de sûreté nucléaire (ASN)

L’Autorité de sûreté nucléaire, au titre de sa mission, réalise un contrôle de l’exploitation des sites nucléaires, dont celui de Chooz. Pour l’ensemble des installations du CNPE de Chooz (Chooz A et Chooz B), en 2016, l’ASN a réalisé 19 inspections :

→ 1 inspection inopinée de chantier (pendant l’arrêt de l’unité de production n°1),
→ 18 inspections thématiques programmées

Pour la partie réacteur à Eau sous Pression

Sûreté nucléaire

Suite aux différentes visites de l’Autorité de sûreté nucléaire en 2016, l’ASN estime que les performances du site de Chooz s’améliorent notamment pour la sûreté avec la baisse du nombre d’événements significatifs pour la sûreté en 2016 par rapport à 2014.

En matière de sûreté nucléaire, l’ASN invite le site à poursuivre ses efforts en 2017 suite à l’apparition de signaux faibles sur :

→ les non-qualités de maintenance et d’exploitation (NQME)
→ le calage des essais périodiques (EP)

Risque explosion

L’Autorité de sûreté nucléaire a souligné la gestion satisfaisante du risque explosion par les équipes de la centrale de Chooz. Quelques remarques ont néanmoins été faites sur le retard de mise en œuvre de certaines actions de progrès ainsi que sur l’absence de formation spécifique des référents dans ce domaine.

Environnement

Une inspection renforcée de deux jours s’est tenue sur le site de Chooz les 12 et 13 avril 2016. L’ASN considère que l’organisation définie et mise en œuvre en matière de prévention des pollutions est satisfaisante. Les dispositions prises en matière de gestion des prélèvements d’eau, des rejets d’effluents et de surveillance de l’environnement ont également été jugées satisfaisantes. Les axes d’amélioration concernent en particulier la gestion des événements polluants et d’eau en cas de fortes pluies ainsi que la représentativité des essais périodiques réalisés sur les obturateurs des égouts de la centrale.

Les points relevés lors des inspections menées en 2016 montrent une réelle volonté du site de Chooz de s’impliquer dans le thème de l’environnement et de continuer à s’approprier la réglementation environnementale.

Radioprotection

Le bilan annuel de l’ASN met en évidence les points suivants :

→ Points forts :
 - bon respect général du référentiel « chantier »,
 - moins d’écarts de propreté radiologique observés sur les chantiers (mais également moins d’activités en 2016),
 - présence d’un totem humain servant à contrôler son matériel avant d’accéder à un chantier en zone contrôlée.
→ Points faibles :
 - objectifs de propreté radiologique en arrêt d’une unité de production en mode EVEREST « Evoluer VERS une Entrée Sans Tenue universelle » moins ambitieux,
 - culture radioprotection des intervenants à développer davantage.
Pour la partie hors Réacteur à Eau sous Pression

Pour la centrale en déconstruction de Chooz A, l’ASN note une bonne tenue de l’installation ainsi que l’absence de déclaration d’événement significatif au cours de l’année. L’ASN souligne également la qualité de la communication entre l’ASN et l’exploitant.

En revanche, l’ASN demande à Chooz A de renforcer la vigilance et le contrôle lors des opérations de levage ou de manutention, la fiabilité des accès aux chantiers en Zone Contrôlée (ZC), les contrôles sur les aménagements des accès aux zones contaminées et la vigilance sur le balisage et l’affichage des zones d’entreposage de déchets en ZC.

À l’issue de ces 19 inspections, l’ASN a établi :

- 89 demandes d’actions correctives ;
- 63 demandes de compléments d’informations ;
- 28 observations.

INSPECTIONS DE L’ASN

<table>
<thead>
<tr>
<th>DATE</th>
<th>ZONE</th>
<th>THÈME CONCERNÉ</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/02/2016</td>
<td>Chooz B</td>
<td>Déchets</td>
</tr>
<tr>
<td>25/02/2016</td>
<td>Chooz B</td>
<td>Organisation et moyens de crise</td>
</tr>
<tr>
<td>01/03/2016</td>
<td>Chooz B</td>
<td>Incendie et explosion</td>
</tr>
<tr>
<td>12 et 13/04/2016</td>
<td>Chooz B</td>
<td>Environnement</td>
</tr>
<tr>
<td>26/04/2016</td>
<td>Chooz B</td>
<td>Suivi en service des Equipements sous pression nucléaires (ESPN)</td>
</tr>
<tr>
<td>28/04/2016</td>
<td>Chooz A</td>
<td>Inspection relative aux vérifications générales périodiques des ponts roulants</td>
</tr>
<tr>
<td>24/05/2016</td>
<td>Chooz B</td>
<td>Inspection de chantiers 2ASR15</td>
</tr>
<tr>
<td>21 et 22/06/2016</td>
<td>Chooz B</td>
<td>Audit du laboratoire de mesure de la radioactivité dans l’environnement</td>
</tr>
<tr>
<td>06/07/2016</td>
<td>Chooz B</td>
<td>Conduite accidentelle</td>
</tr>
<tr>
<td>25/08/2016</td>
<td>Chooz B</td>
<td>Système d’autorisation interne</td>
</tr>
<tr>
<td>28/09/2016</td>
<td>Chooz B</td>
<td>Suivi en service des ESPN soumis à l’arrêté du 10 novembre 1999</td>
</tr>
<tr>
<td>04/10/2016</td>
<td>Chooz A</td>
<td>Inspection générale</td>
</tr>
<tr>
<td>12/10/2016</td>
<td>Chooz B</td>
<td>Systèmes auxiliaires</td>
</tr>
<tr>
<td>25/10/2016</td>
<td>Chooz B</td>
<td>Traitement des écarts</td>
</tr>
<tr>
<td>07/11/2016</td>
<td>Chooz A</td>
<td>Radioprotection des travailleurs</td>
</tr>
<tr>
<td>08/11/2016</td>
<td>Chooz B</td>
<td>Radioprotection</td>
</tr>
<tr>
<td>14/11/2016</td>
<td>Chooz B</td>
<td>Génie civil</td>
</tr>
<tr>
<td>29/11/2016</td>
<td>Chooz B</td>
<td>Inspection du travail sous angle chimique</td>
</tr>
<tr>
<td>08/12/2016</td>
<td>Chooz B</td>
<td>Transports, expédition en INB</td>
</tr>
</tbody>
</table>
2.6 LES ACTIONS D’AMÉLIORATION

Sur l’ensemble des étapes de l’exploitation d’une installation nucléaire, les dispositions générales techniques et organisationnelles relatives à la conception, la construction, au fonctionnement, à l’arrêt et au démantèlement doivent garantir la protection des intérêts que sont la sécurité, la santé et la salubrité publiques, et la protection de la nature et de l’environnement. Parmi ces dispositions, on compte – outre la sûreté nucléaire – l’efficacité de l’organisation du travail et le haut niveau de professionnalisme des personnels.

2.6.1. LA FORMATION POUR RENFORCER LES COMPÉTENCES

Pour l’ensemble des installations, en 2016, 115 764 heures de formation ont été dispensées aux salariés, dont 92 302 animées par les services de formation professionnelle d’EDF. Ces formations sont réalisées dans les domaines suivants : exploitation des installations de production, santé, sécurité et prévention, maintenance des installations de production, management, systèmes d’information, informatique, télécom et compétences transverses (langues, management, développement personnel, communication, achats, etc.).

Par ailleurs, comme chaque centre de production nucléaire, le CNPE de Chooz est doté d’un simulateur, réplique à l’identique d’une salle de commande. Plus de 6 500 heures de formation ont été réalisées sur cet outil pour la formation initiale des futurs opérateurs, ingénieurs sûreté, chefs d’exploitation, l’entraînement, la mise en situation et le perfectionnement des équipes de conduite, des ingénieurs sûreté et des automaticiens. Elles concernent l’exploitation normale du réacteur et la gestion incidentelle.

Le site de Chooz est également doté d’un “chantier école”, réplique d’un espace de travail industriel dans lequel les intervenants s’exercent au comportement d’exploitant du nucléaire (mise en situation avec l’application de ce qu’on appelle, à EDF, les “pratiques de fiabilisation”, simulation d’accès en zone nucléaire, etc.).

Enfin, le site dispose d’un “Espace Maquettes” permettant aux salariés et aux partenaires industriels de se former et de s’ entraîner à des gestes spécifiques avec des maquettes conformes à la réalité avant des activités sensibles de maintenance ou d’exploitation. Cet espace est équipé d’une quatorzième de maquettes. Elles couvrent les domaines de compétences de la chimie, la robinetterie, des machines tournantes, de l’électricité, des automatismes, des essais et de la conduite. En 2016, 4 128 heures de formation ou d’entraînement ont été réalisées de façon réactive.

Parmi les autres formations dispensées, 2 304 heures de formation « recyclage sûreté qualité » et « analyse des risques » ont été réalisées, contribuant au renouvellement des habilitations sûreté nucléaire des salariés du site.

Dans le cadre du renouvellement des compétences, 41 embauches ont été réalisées en 2016, dont 1 travailleur RQTH (Reconnaissance qualité travailleur handicapé) en respect des engagements du site ; 29 nouveaux alternants, parmi lesquels 21 apprentis et 8 contrats de professionnalisation, ont également été accueillis. 27 tuteurs ont été missionnés pour accompagner les nouveaux alternants sur le site.

2.6.2. LES PROCÉDURES ADMINISTRATIVES MENÉES EN 2016

En 2016, deux procédures administratives « IOTA » (Installations Ouvrages Travaux et Activités) relatives au prélèvement d’eau directement dans l’environnement ont été engagées par le CNPE de Chooz pour les sites de Chooz A et Chooz B (INB 163, 139 et 144). Toutes deux concernaient des piézomètres, points de prélèvement de la nappe phréatique.
La radioprotection des intervenants repose sur trois principes fondamentaux

- la justification : une activité ou une intervention nucléaire ne peut être entreprise ou exercée que si elle est justifiée par les avantages qu’elle procure rapportés aux risques inhérents à l’exposition aux rayonnements ionisants ;
- l’optimisation : les expositions individuelles et collectives doivent être maintenues aussi bas qu’il est raisonnablement possible en dessous des limites réglementaires, et ce compte tenu de l’état des techniques et des facteurs économiques et sociétaux (principe appelé ALARA, « As Low As Reasonably Achievable ») ;
- la limitation : les expositions individuelles ne doivent pas dépasser les limites de doses réglementaires.

Les progrès en radioprotection font partie intégrante de la politique d’amélioration de la sécurité. Cette démarche de progrès s’appuie notamment sur :

- la responsabilisation des acteurs à tous les niveaux ;
- la prise en compte technique du risque radiologique dès la conception, durant l’exploitation et pendant la déconstruction des installations ;
- la mise en œuvre de moyens techniques adaptés pour la surveillance continue des installations, des salariés et de l’environnement ;
- le professionnalisme de l’ensemble des acteurs, ainsi que le maintien de leurs compétences.

Ces principaux acteurs sont :

- le Service de Prévention des Risques (SPR), service compétent en radioprotection au sens de la réglementation, et à ce titre distinct des services opérationnels et de production ;
- le Service de Santé au Travail (SST), qui assure le suivi médical particulier des salariés travaillant en milieu radioactif ;
- le chargé de travaux, responsable de son chantier dans tous les domaines de la sécurité/radioprotection et de la sûreté. Il lui appartient notamment de faire respecter les dispositions de prévention définies au préalable en matière de radioprotection ;
- l’intervenant, acteur essentiel de sa propre sécurité, reçoit à ce titre une formation à l’ensemble des risques inhérents à son poste de travail, notamment aux risques radioactifs spécifiques.

Pour estimer et mesurer l’effet du rayonnement sur l’homme, les expositions s’expriment en millisievert (mSv). À titre d’exemple, en France, l’exposition d’un individu à la radioactivité naturelle est en moyenne de 2,5 mSv par an. L’exploitant nucléaire suit un indicateur qui est la dose collective, somme des doses individuelles reçues par tous les intervenants sur les installations durant une période donnée. Elle s’exprime en Homme.Sievert (H.Sv). Par exemple, une dose collective de 1 H.Sv correspond à la dose reçue par un groupe de 1 000 personnes ayant reçu chacune 1 mSv.

LES RÉSULTATS DE DOSIMÉTRIE 2016 POUR LE CNPE DE CHOOZ

Depuis 2004, pour l’ensemble des installations du CNPE de Chooz, aucun intervenant, qu’il soit salarié d’EDF ou d’une entreprise partenaire, n’a reçu de dose supérieure supérieure à 14 mSv sur 12 mois glissants. La limite annuelle réglementaire à ne pas dépasser, fixée par le décret du 31 mars 2003, est de 20 millisievert (mSv) sur douze mois glissants.

Pour les deux réacteurs en fonctionnement, la dosimétrie collective a été de :

- 0,349 H.Sv pour les deux réacteurs en fonctionnement, soit une baisse de 200% par rapport à 2015, année ayant connu un programme de maintenance industrielle plus dense qu’en 2016 ;
- 0,0508 H.mSv pour l’unité en déconstruction de Chooz A.
Sur les centrales nucléaires françaises, les salariés d’EDF et des entreprises partenaires amenés à travailler en zone nucléaire sont tous soumis aux mêmes exigences strictes de préparation, de prévention et de contrôle contre les effets des rayonnements ionisants. La limite annuelle réglementaire à ne pas dépasser, fixée par le décret du 31 mars 2003, est de 20 mSv sur douze mois glissants pour tous les salariés travaillant dans la filière nucléaire française. Les efforts engagés par EDF et par les entreprises partenaires ont permis de réduire progressivement la dose reçue par tous les intervenants. Entre 2005 et 2015 la dosimétrie collective par réacteur a ainsi diminué d’environ 10% (de 0,78 H.Sv par réacteur en 2005 à 0,71 H.Sv en 2015) et la dose moyenne individuelle est passée de 1,66 mSv/an en 2005 à 0,92 mSv/an en 2015. Dans le même temps, le nombre d’heures passées en zone contrôlée a augmenté de 50 %. En 2016, cette tendance à la baisse a connu une légère inflexion en raison d’un volume de travaux particulièrement important : la dose collective et la dose moyenne individuelle ont augmenté d’un peu plus de 7% par rapport à 2015 passant respectivement à 0,76 H.Sv et 1 mSv/an (contre 0,71 H.Sv et 0,92 mSv/an en 2015). L’objectif 2016 de dose collective pour le parc nucléaire français fixé à 0,77 H.Sv, en cohérence avec le volume de travaux, est respecté.

Le travail de fond engagé par EDF et les entreprises partenaires est également profitable pour les métiers les plus dosants. En effet, depuis 2004, sur l’ensemble du parc nucléaire français, aucun intervenant n’a dépassé la dosimétrie réglementaire de 20 mSv sur douze mois. Depuis mi-2012, il n’y a plus d’intervenant ayant dépassé 16 mSv cumulés sur 12 mois. De manière encore plus notable, en 2016, on a constaté sur les six derniers mois de l’année qu’aucun intervenant ne dépassait la dose de 14 mSv sur 12 mois glissants et qu’au maximum, 1 intervenant l’a dépassée en février, mars, avril et mai.

La maîtrise de la radioactivité véhiculée ou déposée dans les circuits, une meilleure préparation des interventions de maintenance, une gestion optimisée des intervenants au sein des équipes pour les opérations les plus dosantes, l’utilisation d’outils de mesure et de gestion de la dosimétrie toujours plus performants et une optimisation des poses de protections biologiques au cours des arrêts ont permis ces progrès importants.
LES INCIDENTS ET ACCIDENTS SURVENUS SUR LES INSTALLATIONS EN 2016

EDF met en application l’Échelle internationale des événements nucléaires (INES).

L’échelle INES (International Nuclear Event Scale), appliquée dans une soixantaine de pays depuis 1991, est destinée à faciliter la perception par les médias et le public de l’importance des incidents et accidents nucléaires. Elle s’applique à tout événement se produisant dans les installations nucléaires de base (INB) civiles, y compris celles classées secrètes, et lors du transport des matières nucléaires. Ces événements sont classés par l’Autorité de sûreté nucléaire selon 8 niveaux de 0 à 7, suivant leur importance.

L’application de l’échelle INES aux INB se fonde sur trois critères de classement :
- les conséquences à l’extérieur du site, appréciées en termes de rejets radioactifs pouvant toucher le public et l’environnement ;
- les conséquences à l’intérieur du site, pouvant toucher les travailleurs, ainsi que l’état des installations ;
- la dégradation des lignes de défense en profondeur de l’installation, constituées des barrières successives (systèmes de sûreté, procédures, contrôles techniques ou administratifs, etc.) interposées entre les produits radioactifs et l’environnement. Pour les transports de matières radioactives qui ont lieu sur la voie publique, seuls les critères des conséquences hors site et de la dégradation de la défense en profondeur sont retenus par l’application de l’échelle INES.

ÉCHELLE INES

<table>
<thead>
<tr>
<th>Niveau</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Accident majeur</td>
</tr>
<tr>
<td>6</td>
<td>Accident grave</td>
</tr>
<tr>
<td>5</td>
<td>Accident entrainant un risque hors du site</td>
</tr>
<tr>
<td>4</td>
<td>Accident n’entrainant pas un risque important hors du site</td>
</tr>
<tr>
<td>3</td>
<td>Incident grave</td>
</tr>
<tr>
<td>2</td>
<td>Incident</td>
</tr>
<tr>
<td>1</td>
<td>Anomalie</td>
</tr>
<tr>
<td>0</td>
<td>Ecart. Aucune importance du point de vue de la sûreté</td>
</tr>
</tbody>
</table>
Les événements qui n’ont aucune importance du point de vue de la sûreté, de la radioprotection et du transport sont classés au niveau 0 et qualifiés d’écarts.

La terminologie d’incident est appliquée aux événements à partir du moment où ils sont classés au niveau 1 de l’échelle INES, et la terminologie d’accident à partir du classement de niveau 4.

Les événements relatifs à l’environnement ne sont pas encore classés sur l’échelle INES, mais des expérimentations sont en cours pour parvenir à proposer un classement sur une échelle similaire.

LES ÉVÉNEMENTS SIGNIFICATIFS DE NIVEAU 0 ET 1

En 2016, pour l’ensemble des installations nucléaires de base, le CNPE de Chooz a déclaré 25 événements significatifs de niveau 0 :

→ 19 pour la sûreté ;
→ 5 pour la radioprotection ;
→ 1 pour le transport.

En 2016, sur le parc nucléaire :

→ 12 ESS génériques ont été déclarés dont deux de niveau 1 ;
→ 3 événements significatifs relatifs au transport de matière nucléaire ont été déclarés, dont un seul de niveau 1.

LES ÉVÉNEMENTS SIGNIFICATIFS DE SÛRETÉ DE NIVEAU 1

Aucun événement de niveau 1 n’a été déclaré en 2016 pour les installations de Chooz B et le réacteur en déconstruction de Chooz A.

LES ÉVÉNEMENTS SIGNIFICATIFS POUR L’ENVIRONNEMENT

En ce qui concerne l’environnement, cinq événements ont été déclarés à l’Autorité de sûreté nucléaire pour les installations de Chooz B et aucun pour le réacteur en déconstruction de Chooz A. Ils ont tous fait l’objet d’une information dans la lettre externe mensuelle du CNPE de Chooz et ont été mis en ligne sur le site internet edf.fr.

En comparaison avec 2015, le nombre d’événements significatifs pour le domaine de l’Environnement a augmenté avec deux événements de plus qu’en 2015.

CONCLUSION

Malgré un nombre plus important d’événements significatifs déclarés en 2016 (25 événements pour 20 événements en 2015), on note une légère progression du CNPE de Chooz puisqu’aucun événement de niveau 1 sur l’échelle INES n’a été déclaré en 2016. Le CNPE poursuit les efforts engagés afin de réduire le nombre d’événements intervenant sur son site.

TABLEAU RÉCAPITULATIF DES ÉVÉNEMENTS SIGNIFICATIFS POUR L’ENVIRONNEMENT EN 2016

<table>
<thead>
<tr>
<th>INB OU RÉACTEUR</th>
<th>DATE DE DÉCLARATION</th>
<th>DATE DE L’ÉVÉNEMENT</th>
<th>ÉVÉNEMENT</th>
<th>ACTIONS CORRECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chooz B</td>
<td>20/01/2016</td>
<td>13/01/2016</td>
<td>Perte de fluide frigorigène d’une climatisation de locaux industriels</td>
<td>Des analyses ont été réalisées afin de déterminer l’origine de cette perte et des réparations ont été réalisées.</td>
</tr>
<tr>
<td>Chooz B</td>
<td>09/02/2016</td>
<td>15/12/2016</td>
<td>Pertes technologiques de fluide frigorigène sur trois groupes frigorifiques de locaux industriels</td>
<td>Des analyses ont été réalisées afin de déterminer l’origine de cette perte et des réparations ont été réalisées.</td>
</tr>
<tr>
<td>Chooz B</td>
<td>01/03/2016</td>
<td>29/02/2016</td>
<td>Perte de fluide frigorigène d’une climatisation de locaux administratifs</td>
<td>Des analyses ont été réalisées afin de déterminer l’origine de cette perte et des réparations ont été réalisées.</td>
</tr>
<tr>
<td>Chooz B</td>
<td>14/12/2016</td>
<td>12/12/2016</td>
<td>Déclenchement du dispositif de contrôle automatique en sortie de site lors du passage d’un camion transportant des déchets conventionnels</td>
<td>Améliorer l’organisation et le suivi des demandes d’intervention liées au matériel de radioprotection.</td>
</tr>
<tr>
<td>Chooz B</td>
<td>28/12/2016</td>
<td>25/11/2016</td>
<td>Perte de fluide frigorigène dans un local industriel de l’unité de production n°2</td>
<td>Des analyses ont été réalisées afin de déterminer l’origine de cette perte et des réparations ont été réalisées.</td>
</tr>
</tbody>
</table>
5.1 LES REJETS RADIOACTIFS

5.1.1. LES REJETS D’EFFLUENTS RADIOACTIFS LIQUIDES

LA NATURE DES REJETS D’EFFLUENTS RADIOACTIFS LIQUIDES

⇒ Le tritium est un isotope radioactif de l’hydrogène. Extrêmement mobile, il présente une très faible énergie et une très faible toxicité. Sur une centrale en fonctionnement, il se présente dans les rejets très majoritairement sous forme d’eau tritiée (HTO) et dans une moindre mesure de tritium gazeux (HT). La plus grande partie du tritium rejeté par une centrale nucléaire provient de l’activation neutronique du bore et du lithium présents dans l’eau du circuit primaire. Le bore est utilisé pour réguler la réaction nucléaire de fission ; le lithium sert au contrôle du pH de l’eau du circuit primaire. La quantité de tritium rejeté est directement liée à la quantité d’énergie produite par le réacteur. Conformément aux consignes d’exploitation, elle est intégralement rejetée - majoritairement par voie liquide en raison d’un impact dosimétrique plus faible comparativement au rejet par voie atmosphérique. Mais les rejets des centrales nucléaires ne constituent pas la seule source de tritium. En effet, du tritium est produit naturellement par l’action des rayons cosmiques sur des composants de l’air comme l’azote, l’oxygène ou encore l’argon.

⇒ Le carbone 14 est produit par l’activation de l’oxygène contenu dans l’eau du circuit primaire. Il est rejeté par voie atmosphérique sous forme de gaz et par voie liquide sous forme de dioxyde de carbone (CO₂) dissous. Radioactif, le carbone 14 se transforme en azote stable en émettant un rayonnement bêta de faible énergie. Cet isotope du carbone, appelé communément radiocarbone, est essentiellement connu pour ses applications dans la datation (détermination de l’âge absolu de la matière organique, à savoir le temps écoulé depuis sa mort). Ce radiocarbone est également produit naturellement dans la haute atmosphère, par des réactions initiées par le rayonnement cosmique.

⇒ Les iodes radioactifs proviennent de la fission du combustible nucléaire. Cette famille comporte une quinzaine d’isotopes radioactifs potentiellement présents dans les rejets. Les iodes radioactifs ont le même comportement chimique et biologique que l’iode alimentaire indispensable au fonctionnement de la glande thyroïde. Les iodes appartiennent à la famille chimique des halogènes, comme le fluor, le chlore et le brome.

⇒ Les autres produits de fission ou produits d’activation. Il s’agit du cumul de tous les autres radionucléides rejetés (autres que le tritium, le carbone 14 et les iodes, cités ci-dessus et comptabilisés séparément). Ces radionucléides sont issus de l’activation neutronique des matériaux de structure des installations (fer, cobalt, nickel contenu dans les aciers) ou de la fission du combustible nucléaire et sont émetteurs de rayonnements bêta et gamma.
LES RÉSULTATS POUR 2016

Les résultats de 2016 pour les rejets liquides sont constitués par la somme des radionucléides rejetés autres que le potassium 40 et le radium. Le potassium 40 existe naturellement dans l’eau, les aliments et le corps humain. Quant au radium, c’est un élément naturel présent dans les terres alcalines. En 2016, pour toutes les installations nucléaires de base du CNPE de Chooz, l’activité rejetée a respecté les seuils réglementaires annuels.

En ce qui concerne le réacteur en déconstruction de Chooz A, ces rejets radioactifs liquides proviennent des infiltrations d’eau de pluie vers l’installation. Ces rejets, par ruissellement, peuvent se charger en tritium.

<table>
<thead>
<tr>
<th>UNITÉ</th>
<th>LIMITE ANNUELLE RÉGLEMENTAIRE</th>
<th>ACTIVITÉ REJETÉE</th>
<th>% DE LA LIMITE RÉGLEMENTAIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tritium</td>
<td>TBq</td>
<td>90</td>
<td>66.3</td>
</tr>
<tr>
<td>Carbone 14</td>
<td>GBq</td>
<td>190</td>
<td>44.87</td>
</tr>
<tr>
<td>Iodes</td>
<td>GBq</td>
<td>0.1</td>
<td>0.0103</td>
</tr>
<tr>
<td>Autres PF PA</td>
<td>GBq</td>
<td>5</td>
<td>0.32</td>
</tr>
</tbody>
</table>
REJETS LIQUIDES RADIOACTIFS POUR LE RÉACTEUR EN DÉCONSTRUCTION EN 2016

<table>
<thead>
<tr>
<th>UNITÉ</th>
<th>LIMITE ANNUELLE RÉGLEMENTAIRE</th>
<th>ACTIVITÉ REJETÉE</th>
<th>% DE LA LIMITE RÉGLEMENTAIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activité rejetée sous forme de tritium</td>
<td>TBq</td>
<td>0.1</td>
<td>0.00106</td>
</tr>
<tr>
<td>Carbone 14</td>
<td>GBq</td>
<td>10</td>
<td>0.95</td>
</tr>
<tr>
<td>Autres produits de fission ou d’activation, émetteurs bêta et gamma (Ni63, Fe55, Sr90, et Tc99 inclus)</td>
<td>GBq</td>
<td>2</td>
<td>0.293</td>
</tr>
</tbody>
</table>

RADIOACTIVITÉ : RAYONNEMENT ÉMIS

ALPHA, BÉTA, GAMMA

PÉNÉTRATION DES RAYONNEMENTS IONISANTS

- **Papier**
 - Alphas
 - Betas
 - Gammas
 - Rayons X

- **Aluminium**
 - Alphas
 - Betas
 - Gammas
 - Rayons X

- **Béton**
 - Alphas
 - Betas
 - Gammas
 - Rayons X
5.1.2. LES REJETS D’EFFLUENTS RADIOACTIFS À L’ATMOSPHÈRE

LA NATURE DES REJETS D’EFFLUENTS À L’ATMOSPHERE

Nous distinguons, sous forme gazeuse, le tritium, le carbone 14, les iodes et tous les autres produits d’activation et de fission, rejetés sous les deux formes suivantes :

➔ Les gaz rares proviennent de la fission du combustible nucléaire. Les principaux sont le xénon et le krypton. Ces gaz sont appelés « GAZ INERTES » car ils ne réagissent pas entre eux ni avec d’autres gaz et n’interfèrent pas avec les tissus vivants (végétaux, animaux, corps humains). Ils ne sont donc pas absorbés et une exposition à des gaz rares radioactifs est similaire à une exposition externe.

➔ Les aérosols sont de fines poussières sur lesquelles peuvent se fixer des radionucléides autres que gazeux comme par exemple des radionucléides du type Césium 137, Cobalt 60.

LES RÉSULTATS POUR 2016

Pour l’ensemble des installations nucléaires du site de Chooz, en 2016, les activités en termes de volume mesurées à la cheminée et au niveau du sol sont restées très inférieures aux limites de rejet prescrites dans :

➔ la décision 2009-DC-0165 du 17 novembre 2009, fixant les limites de rejet dans l’environnement des effluents liquides et gazeux ;
➔ la décision 2009-DC-0164 du 17 novembre 2009, fixant les modalités de prélèvement, de consommation d’eau et de rejet dans l’environnement des effluents liquides et gazeux.

RÉJETS GAZEUX RADIOACTIFS POUR LES RÉACTEURS EN FONCTIONNEMENT EN 2016

<table>
<thead>
<tr>
<th>UNITÉ</th>
<th>LIMITE ANNUELLE RÉGLEMENTAIRE</th>
<th>ACTIVITÉ REJETÉE</th>
<th>% DE LA LIMITE RÉGLEMENTAIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaz rares</td>
<td>TBq</td>
<td>7225</td>
<td>0.362</td>
</tr>
<tr>
<td>Tritium</td>
<td>GBq</td>
<td>5 000</td>
<td>621</td>
</tr>
<tr>
<td>Carbone 14</td>
<td>TBq</td>
<td>1.4</td>
<td>0.229</td>
</tr>
<tr>
<td>Iodes</td>
<td>GBq</td>
<td>0.8</td>
<td>0.0167</td>
</tr>
<tr>
<td>Autres PF PA</td>
<td>GBq</td>
<td>0.1</td>
<td>0.004</td>
</tr>
</tbody>
</table>

RÉJETS GAZEUX RADIOACTIFS POUR LES RÉACTEURS EN DÉCONSTRUCTION EN 2016

<table>
<thead>
<tr>
<th>UNITÉ</th>
<th>LIMITE ANNUELLE RÉGLEMENTAIRE</th>
<th>ACTIVITÉ REJETÉE</th>
<th>% DE LA LIMITE RÉGLEMENTAIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tritium</td>
<td>GBq</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>Carbone 14</td>
<td>TBq</td>
<td>10</td>
<td>0.38</td>
</tr>
<tr>
<td>Autres PF PA</td>
<td>GBq</td>
<td>0.01</td>
<td>0.00627</td>
</tr>
</tbody>
</table>
5.2 LES REJETS NON RADIOACTIFS

5.2.1. LES REJETS CHIMIQUES

LES RÉSULTATS POUR 2016

REJETS CHIMIQUES POUR LES RÉACTEURS EN FONCTIONNEMENT EN 2016

<table>
<thead>
<tr>
<th>PARAMÈTRES</th>
<th>QUANTITÉ ANNUELLE AJOUTÉE AUTORISÉE (KG)</th>
<th>QUANTITÉ REJETÉE EN 2016 (KG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acide borique</td>
<td>16 600</td>
<td>5 650</td>
</tr>
<tr>
<td>Lithine</td>
<td>-</td>
<td>4.3</td>
</tr>
<tr>
<td>Hydrazine</td>
<td>25</td>
<td>0.8</td>
</tr>
<tr>
<td>Morpholine</td>
<td>1 100</td>
<td>186</td>
</tr>
<tr>
<td>Ammonium associé aux rejets radioactifs</td>
<td>3 230</td>
<td>2 990</td>
</tr>
<tr>
<td>Phosphates</td>
<td>620</td>
<td>310</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARAMÈTRES</th>
<th>FLUX* 24H AJOUTÉ AUTORISÉ (KG)</th>
<th>FLUX* 24 H MAXI 2016 (KG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>2 650</td>
<td>1 000</td>
</tr>
<tr>
<td>Chlorures</td>
<td>4 000</td>
<td>1 600</td>
</tr>
<tr>
<td>Ammonium</td>
<td>36</td>
<td>10</td>
</tr>
<tr>
<td>Nitrites</td>
<td>35</td>
<td>9.9</td>
</tr>
<tr>
<td>Nitrates</td>
<td>1 600</td>
<td>1 400</td>
</tr>
<tr>
<td>AOX</td>
<td>13</td>
<td>4.7</td>
</tr>
<tr>
<td>CRT</td>
<td>45</td>
<td>21</td>
</tr>
</tbody>
</table>

* Les rejets de produits chimiques issus des circuits (primaire, secondaire et tertiaire) sont réglementés par les décisions ASN en termes de flux ajoutés (ou débits) enregistrés sur deux heures, sur 24 heures ou annuellement. Les valeurs mesurées sont ajoutées à celles déjà présentes à l’état naturel dans l’environnement.

RÉSULTATS POUR L’INSTALLATION NUCLÉAIRE DE BASE N° 163 (CHOOZ A) EN 2016

<table>
<thead>
<tr>
<th>PARAMÈTRES</th>
<th>UNITÉ</th>
<th>QUANTITÉ ANNUELLE AUTORISÉE</th>
<th>QUANTITÉ REJETÉE EN 2015 (KG)</th>
<th>% DE LA LIMITE RÉGLEMENTAIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Métaux totaux</td>
<td>kg</td>
<td>13</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sulfates</td>
<td>kg</td>
<td>18 000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sodium</td>
<td>kg</td>
<td>8 600</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
5.2.2. LES REJETS THERMIQUES

La décision 2009-DC-0165 du 17 novembre 2009, fixant les limites de rejet dans l’environnement des effluents liquides et gazeux fixe à 3°C la limite d’échauffement moyen journalier de la Meuse entre l’amont et l’aval du rejet. Pour vérifier que cette exigence est respectée, cet échauffement est calculé tous les jours. En 2016, cette limite a toujours été respectée ; l’échauffement maximum calculé a été de 1,31°C au mois de décembre 2016.

Téléchargez sur edf.fr la note d’information :
- La surveillance de l’environnement autour des centrales nucléaires
- L’utilisation de l’eau dans les centrales nucléaires
Comme toute activité industrielle, la production d’électricité d’origine nucléaire génère des déchets, dont des déchets conventionnels et radioactifs à gérer avec la plus grande rigueur.

Responsable légalement, industriellement et financièrement des déchets qu’il produit, EDF a, depuis l’entrée en service de ses premières centrales nucléaires, mis en œuvre des procédés adaptés qui permettent de protéger efficacement l’environnement, les populations, les travailleurs et les générations futures contre l’exposition aux rayonnements de ses déchets.

La démarche industrielle repose sur quatre principes :
- limiter les quantités produites ;
- trier par nature et niveau de radioactivité ;
- conditionner et préparer la gestion à long terme ;
- isoler les déchets de l’homme et de l’environnement.

Pour les installations nucléaires de base du site de Chooz, la limitation de la production des déchets se traduit par la réduction, pour atteindre des valeurs aussi basses que possible, du volume et de l’activité des déchets dès la phase d’achat de matériel ou de la prestation, durant la phase de préparation des chantiers et lors de leur réalisation.

Les déchets radioactifs n’ont aucune interaction avec les eaux (nappe et cours d’eau) et les sols. Les opérations de tri, de conditionnement, de préparation à l’expédition s’effectuent dans des locaux dédiés et équipés de systèmes de collecte d’effluents éventuels.

Lorsque les déchets radioactifs sortent des bâtiments, ils bénéficient tous d’un conditionnement étanche qui constitue une barrière à la radioactivité et prévient tout transfert dans l’environnement. Les contrôles réalisés par les experts internes et les pouvoirs publics sont nombreux et menés en continu pour vérifier l’absence de contamination.

Les déchets conditionnés et contrôlés sont ensuite expédiés vers les filières de stockage définitif.

Les mesures prises pour limiter les effets de ces déchets sur la santé comptent parmi les objectifs visés par les dispositions mises en œuvre pour protéger la population et les intervenants des risques de la radioactivité. L’ensemble de ces dispositions constitue la radioprotection. Ainsi, pour protéger les personnes travaillant dans les centrales, et plus particulièrement les équipes chargées de la gestion des déchets radioactifs, des mesures simples sont prises, comme la mise en place d’un ou plusieurs écrans (murs et dalles de béton, parois en plomb, verres spéciaux chargés en plomb, eau des piscines, etc.), dont l’épaisseur est adaptée à la nature du rayonnement du déchet.
L’article L. 542-1-1 du code de l’environnement introduit par la loi du 28 juin 2006 relative à la gestion durable des matières et déchets radioactifs modifié par l’ordonnance n° 2016-128 du 10 février 2016 portant diverses dispositions en matière nucléaire définit :

- une matière radioactive est une substance qui contient des radionucléides, naturels ou artificiels, dont l’activité ou la concentration justifie un contrôle de radioprotection ;
- une substance radioactive pour laquelle une utilisation ultérieure est prévue ou envisagée, le cas échéant après traitement ;
- les déchets radioactifs sont des substances radioactives pour lesquelles aucune utilisation ultérieure n’est prévue ou envisagée ou qui ont été requalifiées comme tels par l’ASN.

DEUX GRANDES CATÉGORIES DE DÉCHETS

Selon la durée de vie des éléments radioactifs contenus et le niveau d’activité radiologique qu’ils présentent, les déchets sont classés en plusieurs catégories. On distingue les déchets « à vie courte » des déchets « à vie longue » en fonction de leur période (une période s’exprime en années, jours, minutes ou secondes. Elle quantifie le temps au bout duquel l’activité radioactive initiale du déchet est divisée par deux).

Les déchets dits « à vie courte »

Tous les déchets dits « à vie courte » ont une période inférieure ou égale à 31 ans. Ils bénéficient de solutions de gestion industrielles définitives dans les centres spécialisés de l’ANDRA situés dans l’Aube à Morvilliers (déchets de Très Faible Activité, TFA) ou Soulaines (déchets de Faible à Moyenne Activité à Vie Courte, FMAVC). Ces déchets proviennent essentiellement :

- des systèmes de filtration (épuration du circuit primaire : filtres, résines, concentrats, boues...) ;
- des opérations de maintenance sur matériels : pompes, vannes... ;
- des opérations d’entretien divers : vinyles, tissus, gants... ;
- de certains travaux de déconstruction des centrales mises à l’arrêt définitif (gravats, pièces métalliques...) .

Le conditionnement des déchets triés consiste à les enfermer dans des conteneurs adaptés pour éviter toute dissémination de la radioactivité. On obtient alors des déchets conditionnés, appelés aussi « colis de déchets ». Sur les sites nucléaires, le choix du conditionnement dépend de plusieurs paramètres, notamment du niveau d’activité, des dimensions du déchet, de l’aptitude au compactage, à l’incinération et de la destination du colis. Ainsi, le conditionnement de ces déchets est effectué dans différents types d’emballages : coque ou caisson en béton ; fût ou caisson métallique ; fût plastique (PEHD : polyéthylène haute densité) pour les déchets destinés à l’incinération dans l’installation Centraco ; big-bags ou casiers.

Les progrès constants accomplis, tant au niveau de la conception des centrales que de la gestion du combustible et de l’exploitation des installations, ont déjà permis de réduire les volumes de déchets à vie courte de façon significative. Ainsi, les volumes des déchets d’exploitation ont été divisés par trois depuis 1985, à production électrique équivalente.

Les déchets dits « à vie longue »

Les déchets dits « à vie longue » ont une période supérieure à 31 ans. Ils sont générés :

- par le traitement du combustible nucléaire usé effectué dans l’usine AREVA de la Hague, dans la Manche ;
- par la mise au rebut de certaines pièces métalliques issues des réacteurs ;
- par la déconstruction des centrales d’ancienne génération.

Le remplacement de certains équipements du cœur des réacteurs actuellement en exploitation (« grappes » utilisées pour le réglage de la puissance, fourreaux d’instrumentation, etc.) produit des déchets métalliques assez proches en typologie et en activité des structures d’assemblages de combustible : il s’agit aussi de déchets « de Moyenne Activité à Vie Longue » (MAVL) entreposés dans les piscines de désactivation.
Le traitement des combustibles usés consiste à séparer les matières qui peuvent être valorisées et les déchets. Cette opération est réalisée dans les ateliers spécialisés situés dans l’usine AREVA.

Après une utilisation en réacteur pendant quatre à cinq années, le combustible nucléaire contient encore 96 % d’uranium qui peut être recyclé pour produire de nouveaux assemblages de combustible. Les 4 % restants (les « cendres » de la combustion nucléaire) constituent les déchets ultimes qui sont vitrifiés et coulés dans des conteneurs en acier inoxydable : ce sont des déchets « de Haute Activité à Vie Longue (HAVL) ». Les parties métalliques des assemblages sont compactées et conditionnées dans des conteneurs en acier inoxydable qui sont entreposés dans l’usine précitée : ce sont des déchets « de Moyenne Activité à Vie Longue (MAVL) ».

Depuis la mise en service du parc nucléaire d’EDF, et à production énergétique équivalente, l’amélioration continue de l’efficacité énergétique du combustible a permis de réduire de 25 % la quantité de combustible consommée chaque année. Ce gain a permis de réduire, dans les mêmes proportions, la production de déchets issus des structures métalliques des assemblages de combustible. La déconstruction produit également des déchets de catégorie similaire. Enfin, les emplacements de graphite des anciens réacteurs dont la déconstruction est programmée généreront des déchets « de Faible Activité à Vie Longue (FAVL) ».

Après conditionnement, les colis de déchets peuvent être orientés vers :

- le Centre Industriel de Regroupement, d’Entreposage et de Stockage des déchets de très faible activité (Cires) exploité par l’Andra et situé à Morvilliers (Aube) ;
- le Centre de Stockage de l’Aube (CSA) pour les déchets à faible ou moyenne activité exploité par l’Andra et situé à Soulaines (Aube) ;
- l’installation Centraco exploité par Socodei et située à Marcoule (Gard) qui reçoit les déchets destinés à l’incinération et à la fusion. Après traitement, ces déchets sont évacués vers l’un des deux centres exploités par l’Andra.

<table>
<thead>
<tr>
<th>TYPE DÉCHET</th>
<th>NIVEAU D’ACTIVITÉ</th>
<th>DURÉE DE VIE</th>
<th>CLASSIFICATION</th>
<th>CONDITIONNEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtres d’eau</td>
<td>Faible et moyenne</td>
<td></td>
<td>FMAVC (faible et moyenne activité à vie courte)</td>
<td>Fûts, coques</td>
</tr>
<tr>
<td>Filtres d’air</td>
<td></td>
<td></td>
<td>TFA (très faible activité), FMAVC</td>
<td>Casiers, big-bags, fûts, coques, caissons</td>
</tr>
<tr>
<td>Résines</td>
<td></td>
<td>Courte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentrats, boues</td>
<td>Très faible, faible et moyenne</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pièces métalliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matières plastiques, cellulosiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Déchets non métalliques (gravats…)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Déchets graphite</td>
<td>Faible</td>
<td>Longue</td>
<td>FAVL (faible activité à vie longue)</td>
<td>Entreposage sur site</td>
</tr>
<tr>
<td>Pièces métalliques et autres déchets activés</td>
<td>Moyenne</td>
<td></td>
<td>MAVL (moyenne activité à vie longue)</td>
<td>Entreposage sur site (en piscine de refroidissement pour les grappes et autres déchets activés REP)</td>
</tr>
</tbody>
</table>
QUANTITÉS DE DÉCHETS ENTREPOSÉES AU 31 DÉCEMBRE 2016 POUR LES 2 RÉACTEURS EN FONCTIONNEMENT

LES DÉCHETS EN ATTENTE DE CONDITIONNEMENT

<table>
<thead>
<tr>
<th>CATÉGORIE DÉCHET</th>
<th>QUANTITÉ ENTREPOSÉE AU 31/12/2016</th>
<th>COMMENTAIRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFA</td>
<td>131 tonnes</td>
<td>En conteneur sur l’aire TFA</td>
</tr>
<tr>
<td>FMAVC (Liquides)</td>
<td>13.4 tonnes</td>
<td>Effluents du lessivage chimique, huiles, solvants…</td>
</tr>
<tr>
<td>FMAVC (Solides)</td>
<td>40 tonnes</td>
<td>Localisation Bâtiment des Auxiliaires Nucléaires et Bâtiment de Traitement des Effluents (BTE)</td>
</tr>
<tr>
<td>FAVL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAVL</td>
<td>261 objets</td>
<td>Concerne les grappes et les étuis dans les piscines de désactivation (déchets technologiques, galette inox, bloc béton et chemise graphite)</td>
</tr>
</tbody>
</table>

LES DÉCHETS CONDITIONNÉS EN ATTENTE D’EXPÉDITION

<table>
<thead>
<tr>
<th>CATÉGORIE DÉCHET</th>
<th>QUANTITÉ ENTREPOSÉE AU 31/12/2016</th>
<th>TYPE D’EMBALLAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFA</td>
<td>29 colis</td>
<td>Tous types d’emballages confondus</td>
</tr>
<tr>
<td>FMAVC</td>
<td>60 colis</td>
<td>Coques béton</td>
</tr>
<tr>
<td>FMAVC</td>
<td>88 colis</td>
<td>Fûts (méthalliques, PEHD)</td>
</tr>
<tr>
<td>FMAVC</td>
<td>12 colis</td>
<td>Autres (caissons, pièces massives…)</td>
</tr>
</tbody>
</table>
QUANTITÉS DE DÉCHETS ENTREPOSÉES AU 31 DÉCEMBRE 2016 POUR L'UNITÉ EN DÉCONSTRUCTION DE CHOOZ A

<table>
<thead>
<tr>
<th>CATÉGORIE DÉCHET</th>
<th>QUANTITÉ ENTREPOSÉE AU 31/12/2016</th>
<th>COMMENTAIRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFA</td>
<td>544,9 tonnes</td>
<td>Gravats, métaux, amiante</td>
</tr>
<tr>
<td>FMAVC (Liquides)</td>
<td>175,3 tonnes</td>
<td>Boues, huile</td>
</tr>
<tr>
<td>FMAVC (Solides)</td>
<td>97,2 tonnes</td>
<td></td>
</tr>
<tr>
<td>MAVL</td>
<td>2 objets</td>
<td>Etuis de crayons source</td>
</tr>
</tbody>
</table>

LES DÉCHETS EN ATTENTE DE CONDITIONNEMENT

<table>
<thead>
<tr>
<th>CATÉGORIE DÉCHET</th>
<th>QUANTITÉ ENTREPOSÉE AU 31/12/2016</th>
<th>TYPE D'EMBALLAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFA</td>
<td>58 colis</td>
<td>Big-bags, casiers, fûts métalliques, pièces monobloc</td>
</tr>
<tr>
<td>FMAVC</td>
<td>4 colis</td>
<td>Coques béton</td>
</tr>
<tr>
<td></td>
<td>82 colis</td>
<td>Fûts (métalliques, PEHD)</td>
</tr>
<tr>
<td></td>
<td>24 colis</td>
<td>Autres (caissons, pièces massives…)</td>
</tr>
<tr>
<td>MAVL</td>
<td>Néant</td>
<td></td>
</tr>
</tbody>
</table>

LES DÉCHETS CONDITIONNÉS EN ATTENTE D’EXPÉDITION

<table>
<thead>
<tr>
<th>CATÉGORIE DÉCHET</th>
<th>QUANTITÉ ENTREPOSÉE AU 31/12/2016</th>
<th>SITE DESTINATAIRE</th>
<th>NOMBRE DE COLIS ÉVACUÉS</th>
<th>TYPE D'EMBALLAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFA</td>
<td>92 colis</td>
<td>Cires à Morvilliers</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>FMAVC</td>
<td>359 colis</td>
<td>CSA à Soulaines</td>
<td>359</td>
<td></td>
</tr>
<tr>
<td></td>
<td>206 colis</td>
<td>Centraco à Marcoule</td>
<td>206</td>
<td></td>
</tr>
</tbody>
</table>

En 2016, 1 562 colis ont été évacués vers les différents sites de traitement ou de stockage appropriés (Centraco et Andra).
En 2016, 657 colis du site en déconstruction de Chooz A ont été évacués vers les différents sites de traitement ou de stockage appropriés (Centraco et Andra).

Sur Chooz A, deux zones souterraines d’entreposage de déchets sont présentes sur l’installation :

ÉVACUATION ET CONDITIONNEMENT DU COMBUSTIBLE USÉ

Sur les sites nucléaires, lors des arrêts programmés des réacteurs, les assemblages de combustible sont retirés un à un de la cuve du réacteur, transférés dans la piscine de désactivation du bâtiment combustible et disposés verticalement dans des alvéoles métalliques. Les assemblages de combustible usé sont entreposés en piscine de désactivation pendant environ un à deux ans (trois à quatre ans pour les assemblages MOX), durée nécessaire à leur refroidissement et à la décroissance de la radioactivité, en vue de leur évacuation vers l’usine de traitement. À l’issue de cette période, les assemblages usés sont extraits des alvéoles d’entreposage en piscine et placés sous l’écran d’eau de la piscine, dans des emballages de transport blindés dits « châteaux ». Ces derniers sont conçus à la fois pour permettre l’évacuation de la chaleur résiduelle du combustible, pour résister aux accidents de transport les plus sévères et pour assurer une bonne protection contre les rayonnements. Ces emballages sont transportés par voie ferrée et par la route vers l’usine de traitement AREVA de La Hague. En matière de combustibles usés, en 2016, pour les deux réacteurs en fonctionnement, 13 évacuations ont été réalisées vers l’usine de traitement AREVA de La Hague, ce qui correspond à 156 assemblages de combustible évacués.

6.2 LES DÉCHETS NON RADIOACTIFS

Conformément à l’arrêté INB et à la décision ASN 2015-DC-0508, les INB établissent et gèrent un plan de zonage déchets, qui vise à distinguer :

- les Zones à Déchets Conventionnels (ZDC) d’une part, à l’intérieur desquelles les déchets produits ne sont ni contaminés ou activés ni susceptibles de l’être ;
- les Zones à production possible de déchets nucléaires (ZPPDN) d’autre part, à l’intérieur desquelles les déchets produits sont contaminés, activés ou susceptibles de l’être.

Les déchets conventionnels produits par les INB sont ceux issus de ZDC et sont classés en 3 catégories :

- les Déchets Inertes (DI), qui ne contiennent aucune trace de substances toxiques ou dangereuses, et ne subissent aucune modification physique, chimique ou biologique importante pour l’environnement (déchets minéraux, verre, déblais, terres et gravats…) ;
- les déchets non dangereux non inertes, qui ne présentent aucune des propriétés qui rendent un déchet dangereux (gants, plastiques, déchets métalliques, papier/carton, caoutchouc, bois, câbles électriques…) ;
Les Déchets Dangereux (DD) qui contiennent des substances dangereuses ou toxiques, ou sont souillés par de telles substances (accumulateurs au plomb, boues/terres marquées aux hydrocarbures, résines, peintures, piles, néons, déchets inertes et industriels banals souillés, déchets amiantifères, bombes aérosols, DASRI, …).

Ils sont gérés conformément aux principes définis dans la directive cadre sur les déchets :

- réduire leur production et leur dangerosité par une gestion optimisée,
- favoriser le recyclage et la valorisation.

Les quantités de déchets conventionnels produites en 2016 par les INB EDF sont précisées dans le tableau ci-dessous :

<table>
<thead>
<tr>
<th>QUANTITÉS 2016 EN TONNES</th>
<th>DÉCHETS DANGEREUX</th>
<th>DÉCHETS NON DANGEREUX NON INERTES</th>
<th>DÉCHETS INERTES</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>produits valorisés</td>
<td>produits valorisés</td>
<td>produits valorisés</td>
<td>produits valorisés</td>
</tr>
<tr>
<td>Sites en exploitation</td>
<td>8 627,2 t</td>
<td>6 442,8 t</td>
<td>49 121,3 t</td>
<td>208 364,6 t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41 667,3 t</td>
<td>208 128,2 t</td>
<td>256 238,3 t</td>
</tr>
<tr>
<td>Sites en déconstruction</td>
<td>243,6 t</td>
<td>153,7 t</td>
<td>1 198,4 t</td>
<td>1 753,9 t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 074 t</td>
<td>230,3 t</td>
<td>1 458 t</td>
</tr>
</tbody>
</table>

La production de déchets inertes a été historiquement conséquente en 2016 du fait d’importants chantiers, en particulier les chantiers de modifications post Fukushima et l’aménagement de parkings ou bâtiments tertiaires.

Les productions de déchets dangereux et de déchets non dangereux non internes restent relativement stables.

De nombreuses actions sont mises en œuvre par EDF pour optimiser la gestion, afin notamment d’en limiter les volumes et les effets sur la santé et l’environnement. Parmi celles-ci, on peut citer :

- la création en 2006 du Groupe Déchets Economie Circulaire, chargé d’animer la gestion des déchets conventionnels pour l’ensemble des entités d’EDF. Ce groupe, qui s’inscrit dans le cadre du Système de Management Environnemental certifié ISO 14001 d’EDF, est composé de représentants des Divisions/Métiers des différentes Directions productrices de déchets. Ses principales missions consistent à apporter de la cohérence en proposant des règles et outils de référence aux entités productrices de déchets ;
- les entités productrices de déchets conventionnels disposent d’un outil informatique qui permet en particulier de maîtriser les inventaires de déchets et leurs voies de gestion ;
- la définition depuis 2008 d’un objectif de valorisation pour l’ensemble des déchets valorisables. Cet objectif est actuellement fixé à 90% ;
- la prise en compte de la gestion des déchets dans les contrats de gestion des sites ;
- la mise en place de structures opérationnelles assurant la coordination et la sensibilisation à la gestion des déchets de l’ensemble des métiers ;
- la création de stages de formation spécifiques « gestion des déchets conventionnels » ;
- le recensement annuel des actions de prévention de production des déchets.

En 2016, les unités de production 1 et 2 de la centrale de Chooz ont produit 14 365 tonnes de déchets conventionnels. 99 % de ces déchets ont été valorisés ou recyclés.
7

LES ACTIONS EN MATIÈRE DE TRANSPARENCE ET D’INFORMATION

Tout au long de l’année, les responsables des installations nucléaires de Chooz donnent des informations sur l’actualité de leur site et apportent, si nécessaire, leur contribution aux actions d’informations de la Commission locale d’information (CLI) et des pouvoirs publics.

➔ LES CONTRIBUTIONS À LA COMMISSION LOCALE D’INFORMATION

En 2016, deux réunions de la Commission Locale d’Information (CLI) se sont tenues à la demande de son Président, les 7 juin et 13 décembre. Lors de ces réunions, le site de Chooz a présenté les sujets d’actualité et les résultats en matière de production, sûreté, radioprotection et environnement. Plusieurs thématiques ont fait l’objet de présentations spécifiques par EDF lors de ces réunions, notamment :

➔ un compte-rendu des événements survenus à la centrale depuis le 20 octobre 2015 ayant nécessité une information auprès de la CLI ;
➔ un point sur l’année 2016, ses enjeux et son programme industriels avec la réalisation d’un Arrêt Simple rechargement sur l’unité de production n°2 et la préparation des Visites Partielles des unités de production n°1 et n°2 de l’année 2017 ;
➔ une présentation du passage en EVEREST « Evoluer VERs une Entrée Sans Tenue universelle » permettant aux salariés d’accéder en zone contrôlée en tenue de travail conventionnelle ;
➔ un retour en images sur l’exercice réalisé par la Force d’Action Rapide du Nucléaire sur le site de Chooz les 1er et 2 mars 2016 ;
➔ une information sur la mise en service de l’Espace Maquettes dédié à la formation pratique des intervenants ;
➔ une information sur le sujet de la ségrégation carbone et ses impacts sur le parc nucléaire.

Cette commission indépendante a comme principaux objectifs d’informer les riverains sur l’actualité du site et de favoriser les échanges ainsi que l’expression des interrogations éventuelles. La commission compte 59 membres nommés par le Président du Conseil Départemental. Il s’agit d’élus locaux français et belges, de représentants des pouvoirs publics et de l’Autorité de sûreté nucléaire, de membres d’associations et de syndicats, etc. En 2012, elle s’est formée en association de type loi 1901.

➔ UNE RENCONTRE ANNUELLE AVEC LES ÉLUS

Le 12 janvier 2016, le CNPE de Chooz a organisé la réunion annuelle avec les élus locaux et les acteurs économiques et institutionnels de la Pointe des Ardennes pour présenter les résultats et faits marquants de l’année écoulée. Les actions prioritaires et les principaux événements à venir sur l’année 2016 ont été présentés à cette occasion.

➔ LES ACTIONS D’INFORMATION EXTERNE DU CNPE À DESTINATION DU GRAND PUBLIC, DES REPRÉSENTANTS INSTITUTIONNELS ET DES MÉDIAS

En 2016, le CNPE de Chooz a mis à disposition plusieurs supports pour informer le grand public :

Tout au long de l’année :

Le CNPE dispose d’un site internet edf.fr/chooz qui lui permet de tenir informé le grand public de toute son actualité (vie de la centrale, événements techniques, publications pré-citées, résultats environnementaux…). Les résultats environnementaux des centrales de Chooz A et B sont mis en ligne tous les mois dans deux onglets spécifiques intitulés « Sûreté et environnement » ;

Le CNPE dispose aussi d’un numéro vert. Le public peut y trouver des informations générales sur le fonctionnement de la centrale et sur le Centre d’Information du Public. Ce répondeur est mis à jour chaque semaine ou plus fréquemment si l’actualité le nécessite. Les numéros verts sont les suivants : pour la France 0 800 857 968 et depuis la Belgique 0 800 74 843 ;

Le Centre d’Information du Public a accueilli 4 650 visiteurs en 2016. Des visites des installations sont organisées pour des entreprises, des associations, des écoles, des élus… La centrale a noué des partenariats privilégiés avec le monde enseignant puisque la moitié de ses visiteurs est issue du milieu de l’enseignement. Néanmoins, toute personne qui le souhaite peut venir s’informer spontanément sur la centrale de Chooz, la production d’électricité d’origine nucléaire, les différentes énergies ou encore le groupe EDF en se rendant au Centre d’Information du Public, qui accueille le public du lundi au vendredi, entre 13h30 et 17h30 ;

La centrale est également dotée d’un compte Twitter : @EDFChooz. À fin 2016, 1 070 personnes suivaient ce compte. La centrale utilise cet outil pour transmettre des informations relatives aux actualités de la centrale (visites, événements, publications, offres d’emploi, événements techniques…) ou au Groupe EDF.

12 éditions du « Chooz en Perspective », le mensuel d’information externe du site ont été publiées. Ce mensuel présente les actualités du site, les événements déclarés à l’Autorité de sûreté nucléaire ainsi que les résultats en matière d’environnement (rejets liquides et gazeux, surveillance de l’environnement), de radioprotection et de propreté des transports (déchets, outillages, etc.). Il est envoyé par messagerie électronique aux élus locaux, aux membres de la CLI, aux pouvoirs publics, aux établissements scolaires ainsi qu’en version papier à près de 500 personnes en France et en Belgique, et à toute personne qui en fait la demande. Il est également disponible sur le site internet de la centrale edf.fr/chooz et au Centre d’Information du Public de la centrale de Chooz.
LES RÉPONSES AUX SOLICITATIONS DIRECTES DU PUBLIC

En 2016, le CNPE de Chooz a reçu 13 sollicitations traitées dans le cadre de l’article L.125-10 et suivant du code de l’environnement (ex-article 19 de la loi Transparence et Sécurité Nucléaire). Ces demandes concernaient les thématiques suivantes

- La conduite à tenir par les entreprises à proximité de la centrale en cas d’accident ;
- Les dispositifs mis en place par le CNPE pour le nettoyage des vêtements de travail suite au passage en EVEREST du site ;
- La date des arrêts de tranche ayant eu lieu en 2015 et ceux prévus en 2016 ;
- Les consignes relatives à la campagne de distribution des comprimés d’iode (liste des contre-indications, la nécessité de prendre les comprimés en cas d’ablation de la thyroïde, les modalités de distribution d’iode en Belgique, le dédommagement de la distribution pour les pharmaciens locaux) ;
- Les coûts du démantèlement de la centrale de Chooz A et les entreprises mobilisées sur ses chantiers ;
- Le nombre de visiteurs reçus par le CNPE de Chooz en 2014 et 2015 en vue de la mise en place d’une signalétique pour identifier le CNPE de Chooz au titre du tourisme industriel ;
- La continuité de production d’électricité en cas de grève ;
- Les conditions d’exercice des salariés détachés sur la centrale de Chooz par rapport aux autres unités du parc nucléaire d’EDF ;
- Les conditions de mobilisation des secours sur le site ;

Pour chaque sollicitation, selon sa nature et en fonction de sa complexité, une réponse à été faite dans le délai légal, à savoir un ou deux mois selon le volume et la complexité de la demande et selon la forme requise par la loi.
En 2016, les 965 salariés du CNPE de Chooz (salariés d’EDF et d’entreprises partenaires) ont assuré une production de 22,5 milliards de kWh, soit près de 4 % de la production nucléaire française d’EDF. L’année a été marquée par un arrêt programmé pour maintenance et rechargement du combustible sur l’unité de production n°2 et par un exercice à taille réelle de la Force d’Action Rapide du Nucléaire. La centrale de Chooz a été, cette année encore, un acteur économique majeur de la région en investissant plus de 67 millions d’euros pour maintenir les installations dans un état optimum pour un fonctionnement en toute sûreté, dont 15,7 millions d’euros ont été investis pour améliorer les performances des unités de production. Les entreprises locales sollicitées sont nombreuses, environ 110 en 2016. Les commandes passées directement à des fournisseurs ayant leur siège dans les Ardennes s’élèvent à 2,929 millions d’euros.

Sur le site en déconstruction de Chooz A, plusieurs opérations importantes ont été réalisées au cours de l’année. Dans la caverne réacteur, les travaux d’étanchéité de la piscine et les premiers essais du circuit de traitement de l’eau ont été réalisés et le montage des ateliers de traitement de déchets s’est poursuivi.

La sûreté a constitué, cette année encore, la première des priorités pour les équipes de la centrale de Chooz. En 2016, la centrale a déclaré à l’Autorité de sûreté nucléaire 19 événements significatifs sûreté classés au niveau 0 de l’échelle INES qui en compte sept. De même, les équipes de la centrale de Chooz ont porté une attention particulière à la sécurité des personnes intervenant sur ses installations, qu’elles soient EDF ou d’entreprises partenaires. En 2016, le taux de fréquence d’accidents, c’est-à-dire le nombre d’accidents par million d’heures travaillées, s’est élevé à 1,38 pour Chooz B et 0 pour Chooz A, la centrale en déconstruction. Il s’agit de la deuxième année consécutive où la centrale de Chooz A obtient un Tf de 0. Les visites sécurité réalisées cette année sur les installations et la sensibilisation du personnel ont porté leurs fruits et doivent se poursuivre.

Les équipes du service de prévention des risques ont surveillé avec vigilance les rayonnements auxquels pouvaient être exposés les salariés et partenaires industriels afin de les limiter au maximum. Ainsi, en 2016, aucun intervenant n’a dépassé 10 mSv, la réglementation fixant la limite d’exposition pour les travailleurs du nucléaire à 20 mSv / an. De même, la médecine du travail a effectué 3 921 contrôles anthropogammamétriques sur le personnel et les intervenants.

Concernant l’engagement de la centrale de Chooz dans la formation, une seconde promotion d’élèves du lycée Vauban de Givet a obtenu un baccalauréat professionnel spécialisé dans le domaine de la prévention des risques en environnement nucléaire. Les étudiants peuvent désormais se lancer dans le monde du travail sur les centrales nucléaires du parc ou s’orienter vers un diplôme universitaire à l’Institut Universitaire Technologique de Charleville-Mézières où une formation Hygiène sécurité environnement, option Prévention en milieu nucléaire a été inaugurée en janvier 2016.

Enfin, en 2016, le Centre d’Information du Public de la centrale de Chooz a accueilli 4 650 visiteurs dont 440 lors de ses journées portes ouvertes les « Journées de l’Industrie Electrique » réalisées chaque année au mois d’octobre. Plus de 500 personnes ont reçu, chaque mois, le magazine d’actualités de la centrale et 1 070 internautes ont suivi l’actualité du site en direct sur son compte Twitter @EDFChooz.
GLOSSAIRE

Retrouvez ici la définition des principaux sigles utilisés dans ce rapport.

AIEA
L’Agence Internationale de l’Énergie Atomique est une organisation intergouvernementale autonome dont le siège est à Vienne, en Autriche. Elle a été créée en 1957, conformément à une décision de l’Assemblée générale des Nations unies, pour notamment :

- encourager la recherche et le développement pacifiques de l’énergie atomique ;
- favoriser les échanges de renseignements scientifiques et techniques ;
- instituer et appliquer un système de garanties afin que les matières nucléaires destinées à des programmes civils ne puissent être détournées à des fins militaires ;

ALARA
As Low As Reasonably Achievable (« aussi bas que raisonnablement possible »).

ANDRA
Agence nationale pour la gestion des déchets radioactifs. Établissement public à caractère industriel et commercial chargé de la gestion et du stockage des déchets radioactifs solides.

ASN
Autorité de sûreté nucléaire. L’ASN, autorité administrative indépendante, participe au contrôle de la sûreté nucléaire et de la radioprotection et à l’information du public dans ces domaines.

CHSCT
Comité d’Hygiène pour la Sécurité et les Conditions de Travail.

CLI
Commission Locale d’Information sur les centrales nucléaires.

CNPE
Centre Nucléaire de Production d’Électricité.

DUS
Diesels d’Ultime Secours. La construction des DUS sur les sites du parc nucléaire français a été décidée dans le cadre du retour d’expérience de Fukushima. Conçus pour apporter un moyen d’alimentation supplémentaire en cas de situation extrême, ils permettront une autonomie de carburant de 72 heures pour une puissance électrique de 3,5 mégawatts.

GAZ INERTES
Gaz qui ne réagissent pas entre eux, ni avec d’autres gaz, et n’interfèrent pas avec les tissus vivants (végétaux, animaux, corps humains).

ANCES
International Nuclear Event Scale. Échelle de classement internationale des événements nucléaires conçue pour évaluer leur gravité.

MOX
Mixed OXydes (« mélange d’oxydes » d’uranium et de plutonium).

NOYAU DUR
Dispositions matérielles et organisationnelles robustes visant, pour des situations extrêmes considérées dans les Évaluations Complémentaires de Sûreté (ECS), à prévenir un accident avec fusion ou en limiter la progression, et permettre à l’exploitant d’assurer ses missions dans la gestion de crise. C’est un filet de protections ultimes pour éviter tout rejet radioactif important dans l’environnement.

PPI

PUI
Plan d’Urgence Interne. Établi et déclenché par l’exploitant, ce plan a pour objet de ramener l’installation dans un état sûr et de limiter les conséquences de l’accident sur les personnes, les biens et l’environnement.

RADIOACTIVITÉ
Les unités de mesure de la radioactivité :

- Becquerel (Bq) : mesure l’activité de la source, soit le nombre de transformations radioactives par seconde. À titre d’exemple, la radioactivité du granit est de 1 000 Bq/kg.
- Gray (Gy) : mesure l’énergie absorbée par unité de masse dans la matière inerte ou la matière vivante, le gray correspond à une énergie absorbée de 1 joule par kg.
- Sievert (Sv) : mesure les effets des rayonnements sur l’homme. Les expositions s’expriment en général en millisievert (mSv) et en microsievert. À titre d’exemple, la radioactivité naturelle en France pendant une année est de 2,5 mSv.

REP
Réacteur à Eau Pressurisée.

SDIS
Service Départemental d’Incendie et de Secours.

UNGG
Filière nucléaire uranium naturel graphite gaz.

WANO
L’association WANO (World Association for Nuclear Operators) est une association indépendante regroupant 127 exploitants nucléaires mondiaux. Elle travaille à améliorer l’exploitation des centrales dans les domaines de la sûreté et de la disponibilité au travers d’actions d’échanges techniques, dont les « peer review », évaluations par des pairs de l’exploitation des centrales à partir d’un référentiel d’excellence.
Conformément à l’article L.125-16 du code de l’environnement, ce rapport annuel relatif aux installations nucléaires de base de Chooz B et Chooz A (INB 139, 144 et 163) a été soumis au Comité d’Hygiène pour la Sécurité et les Conditions de Travail de Chooz B le 16 juin 2017. Le Comité a demandé quelques précisions, notamment concernant :

- Le rappel de la liste des personnes destinataires du rapport annuel d’information du public relatif aux installations nucléaires de base de Chooz.

Ces recommandations ont été adoptées à l’unanimité par les 6 membres présents en séance CHSCT du 16/06/2017 à Chooz.

Chooz, le 16 juin 2017
Vincent LEROY
Secrétaire du CHSCT

Chooz, le 16 juin 2017
Laurent BERTHIER
Président du CHSCT
Les Représentants du Personnel en CHSCT EDF - DP2D Intersites font le constat, une nouvelle fois, que la quasi-totalité des recommandations émises l’année dernière n’ont pas été prises en compte.

→ Les lettres de suite émises par l’Autorité de sûreté nucléaire ainsi que les observations et réponses faites par le Directeur sont parfois communiquées au CHSCT, mais jamais débattues en séance.

→ N’apparaissent pas les événements impactant la sûreté, signaux faibles, écarts fins, hors déclaration…

→ Les indicateurs de santé (absentéisme, souffrance au travail, démobilisation) ne sont pas pris en compte, ils ont pourtant une incidence sur la sûreté.

→ Les accidents du travail ne sont pas pris en compte dans ce rapport contrairement à l’article L.591-5 du code de l’environnement qui cite : « En cas d’incident ou d’accident, nucléaire ou non, ayant ou risquant d’avoir des conséquences notables sur la sûreté de l’installation, … l’exploitant d’une installation nucléaire de base ou la personne responsable est tenu de le déclarer sans délai à l’Autorité de sûreté nucléaire et à l’autorité administrative ».

Les Représentants du Personnel en CHSCT EDF - DP2D intersites recommandent une réelle prise en compte de l’adéquation charge/moyens sur les sites de la DP2D. Ils déplorent que la Direction continue à recourir à de l’Assistance à Maitrise d’Ouvrage (AMO), y compris pour des activités sensibles, ce qui conduit à une perte de maîtrise et de savoir-faire des équipes EDF. L’ASN en faisait déjà état dans le rapport CODEP-CAE-2013-026969 faisant suite à une inspection sur les sites en déconstruction de Chinon A et St-Laurent A en mars 2013 :

→ « Un axe de progrès concerne la vulnérabilité de l’organisation des sites en déconstruction ou l’approche à l’Assistance à Maitrise d’Ouvrage (AMO). L’ASN estime que ce recours doit être réduit ». Cette recommandation a déjà été plusieurs fois rappelée par le CHSCT, la Direction n’a pas pris en compte la demande. Nous émettons également cette recommandation concernant le renouvellement des contrats à venir sur le site de Brennilis à propos des sous-traitants locaux.

Les Représentants du Personnel en CHSCT EDF - DP2D intersites recommandent que les effectifs des sites en déconstruction soient revus à la hausse, notamment Chooz A et St-Laurent A, pour les raisons suivantes :

→ Le site de Chooz A est considéré comme la vitrine d’EDF concernant le démantèlement, ce qui génère une charge de travail supplémentaire pour des agents déjà très sollicités.

→ Il n’est pas acceptable qu’un recours très important aux heures supplémentaires perdue pour assurer la réponse à la charge de travail qui provient d’une part d’activités de terrain sous-évaluées, et d’autre part du planning projet qui est trop volontariste dans ces conditions. Il faut sortir de la culture de l’urgence sur nos sites en déconstruction.

Les Représentants du Personnel en CHSCT - EDF DP2D intersites recommandent que, concernant les sites Uranium Naturel Graphite Gaz (UNGG), la Direction donne de la visibilité aux salariés sur le planning de Mise en Configuration Sécurisée (MCS), tout en s’étonnant que la Direction n’attende pas l’accord formalisé de l’ASN concernant la nouvelle stratégie.

Les Représentants du Personnel en CHSCT EDF - DP2D intersites recommandent que la valeur travail soit replacée au premier plan, en lieu et place de la valeur financière. La reconnaissance des salariés fait cruellement défaut, quelle que soit sa forme.

Les Représentants du Personnel en CHSCT EDF - DP2D intersites recommandent que la Direction s’interroge sur les sujets suivants :

→ Une démobilisation croissante des salariés malgré une volonté personnelle de bien faire son travail.

→ Le nombre toujours important de décideurs dans l’unité, avec des injonctions parfois contradictoires pour les salariés entre travail de fond et temps réel, et un questionnement toujours d’actualité sur l’articulation entre chef de projet et chef de site en déconstruction.

→ Des résultats de l’enquête aux salariés « MyEDF » qui, malgré un mieux dû, semble-t-il, à la « digestion » du changement d’établissement, montre tout de même des résultats plutôt inquiétants.

Ces recommandations ont été adoptées à l’unanimité par les 5 membres présents en séance CHSCT EDF – DP2D intersites du 30/05/2017 à Lyon.
2016

RAPPORT ANNUEL D’INFORMATION DU PUBLIC RELATIF AUX INSTALLATIONS NUCLÉAIRES DE BASE DE

CHOOZ

EDF
Direction Production Nucléaire
CNPE de Chooz
BP 174, 08600 GIVET
Contact :
Caroline WINKLER : + 33 (0) 3 24 36 31 89.
Courriel : caroline.winkler@edf.fr

Siège social
22-30, avenue de Wagram
75008 PARIS

R.C.S. Paris 552 081 317
SA au capital de 1 370 938 843,50 euros

www.edf.fr