

SOMMAIRE

Parti	ie I - Le Centre Nucléaire de Production d'Electricité du Bugey en 2020	5
I.	Contexte	5
II.	Le CNPE du Bugey	5
III.	. Modifications apportées au voisinage du CNPE du Bugey	6
IV.	. Évolutions scientifiques susceptibles de modifier l'étude d'impact	6
V. I'e	Bilan des incidents de fonctionnement et des évènements significatifs pour environnement	
Parti	ie II - Prélèvements d'eau	10
I.	Prélèvement d'eau destinée au refroidissement	_ 12
II.	Prélèvement d'eau destinée à l'usage industriel	12
III.	Prélèvement d'eau destinée à l'usage domestique	_ 12
IV. et	. Milieu de prélèvement : comparaison pluriannuelle, prévisionnel, valeurs lin maintenance	
Parti	ie III – Restitution et consommation d'eau	15
I.	Restitution d'eau	_ 15
II.	Consommation d'eau	15
Parti	ie IV - Rejets d'effluents	16
I.	Rejets d'effluents à l'atmosphère	16
II.	Rejets d'effluents liquides	_ 29
III.	Rejets thermiques	_ 47
Parti	ie V - Prévention du risque microbiologique	50
I.	Bilan annuel des colonisations en circuit	_ 50
II.	Synthèse des traitements biocides et rejets associés	51
Parti	ie VI - Surveillance de l'environnement	52
I.	Surveillance de la radioactivité dans l'environnement	_ 52
II.	Physico-chimie des eaux souterraines	58
III.	. Chimie et physico-chimie des eaux de surface	59
IV.	. Physico-chimie et Hydrobiologie	61
V.	Acoustique environnementale	68

Partie VII - Évaluation de l'impact environnemental et sanitaire des rejets de l'installation 69

Parti	e VIII - Gestion des déchets	73
I.	Les déchets radioactifs	73
II.	Les déchets non radioactifs	79
ABRE	VIATIONS	82
ANNI	EXE 1 : Suivi de la concentration en amibes et en légionelles sur 2020	83
ΔΝΝΙ	EXE 2 : Suivi radinécologique annuel du CNPE du Rugey Année 2020	84

Partie I - Le Centre Nucléaire de Production d'Electricité du Bugey en 2020

I. Contexte

« La conformité à la réglementation en vigueur, la prévention des pollutions ainsi que la recherche d'amélioration continue de la performance environnementale » constituent l'un des engagements de la politique environnementale d'EDF.

Dans ce cadre, tous les Centres Nucléaires de Production d'Electricité (CNPE) d'EDF disposent d'un système de management de l'environnement certifié « ISO 14001 ».

La maîtrise des événements, susceptibles d'avoir un impact sur l'environnement, repose sur une application stricte des règles de prévention (bonne gestion des eaux usées, des « effluents », de leurs traitements, entreposage, contrôles avant rejet, etc.) et sur un système complet de surveillance de l'environnement sur et autour des CNPE.

En application de l'article 4.4.4 de l'arrêté du 7 février 2012 fixant les règles générales relatives aux installations nucléaires de base, ce document présente le bilan de l'année 2020 du CNPE du Bugey en matière d'environnement.

II. Le CNPE du Bugey

Implantée sur la commune de Saint-Vulbas, dans l'Ain, la centrale nucléaire du Bugey occupe une superficie de 100 hectares sur la rive droite du Rhône, à 40 km à l'Est de Lyon. Cette zone non cultivée a été choisie en 1965 en raison de ses caractéristiques géologiques. Les premiers travaux de construction du site du Bugey ont eu lieu à partir de 1967.

La centrale du Bugey emploie près de 1400 salariés EDF et fait appel à environ 425 salariés permanents d'entreprises prestataires. Pour réaliser les travaux lors des arrêts pour maintenance des unités en fonctionnement, la centrale demande l'appui d'intervenants supplémentaires. Selon la nature de l'arrêt, le nombre de ces intervenants varie de 600 à 2000.

La centrale du Bugey compte quatre unités de production de 900 MW chacune de la filière Réacteur à Eau Pressurisée (REP) : les unités 2 et 3 (INB n°78), refroidies directement par l'eau du Rhône, ont été mises en service en 1978 ; les unités 4 et 5 (INB n°89), mises en service en 1979, sont quant à elles refroidies à l'aide de deux tours de refroidissement chacune. Depuis leur mise en service, ces quatre unités ont produit 881 milliards de kWh. La centrale du Bugey produit, en moyenne chaque année, près de 20 milliards de kWh, soit près de 6% de la production nucléaire française.

Le site du Bugey abrite aussi une unité de la filière UNGG (réacteur Bugey 1 – INB n°45), mise en service en 1972. Cette unité, définitivement arrêtée en mai 1994, est actuellement en cours de déconstruction. Le décret d'autorisation de démantèlement complet du réacteur du Bugey 1 a été publié dans le Journal officiel en novembre 2008 (Décret n°2008-1197 du 18 novembre 2018), permettant ainsi la poursuite du programme de déconstruction de Bugey 1.

Un Magasin Inter-Régional de stockage de combustible neuf destiné aux réacteurs du parc nucléaire français est également installé sur le site. Le MIR constitue l'installation nucléaire de base n°102.

Le site abrite également l'Installation de Conditionnement et d'Entreposage des Déchets Activés (ICEDA), INB n°173, qui a fait l'objet du décret d'autorisation de création n°2010-402 du 23 avril 2010. Dans l'attente d'un site de stockage définitif prévu par la loi du 28 juin 2006, cette installation a pour but de conditionner et d'entreposer des déchets radioactifs, produits dans le cadre :

- du programme EDF de démantèlement des centrales nucléaires de première génération et du site de Creys-Malville ;
- de l'exploitation (notamment les barres de commande) des centrales nucléaires à eau pressurisée.

L'ICEDA a fait l'objet d'une autorisation de mise en service de l'ASN via la Décision n°2020-DC-0691 du 28 juillet 2020. Elle a officiellement été mise en service le 25 septembre 2020 avec la réception du 1^{er} colis de déchets issus de l'INB en démantèlement de Chooz A et est dans l'attente de l'accord de l'ASN pour conditionner les premiers colis de déchets.

Les installations nucléaires de base du Bugey sont placées sous la responsabilité du directeur du CNPE du Bugey, à l'exception :

- des activités de déconstruction de l'INB n°45 (Bugey 1), dont la responsabilité a été transférée au chef de la structure Bugey 1 en mai 2018;
- des activités de conditionnement et d'entreposage de déchets radioactifs (INB n°173), dont la responsabilité est assurée par le directeur de site ICEDA.

III. Modifications apportées au voisinage du CNPE du Bugey

La surveillance de l'environnement industriel est réalisée en application d'une prescription interne d'EDF. Lors de l'année 2020, quelques modifications notables au voisinage du CNPE du Bugey ont été identifiées, comme la mise en service de nouvelles installations ou encore l'évolution du statut de certaines entreprises situées au voisinage du CNPE. Cependant, aucun nouveau risque n'a été induit.

IV. Évolutions scientifiques susceptibles de modifier l'étude d'impact

Dans le cadre d'une démarche d'amélioration continue, EDF mène des études afin d'améliorer la connaissance de ses rejets (identification de sous-produits de la morpholine et de l'éthanolamine, de sous-produits issus des traitements biocides, dégradation de la monochloramine et de l'hydrazine dans l'environnement etc.). EDF mène également des études afin d'améliorer la connaissance de l'incidence de ses rejets sur l'homme et l'environnement. Ces évaluations d'impact nécessitent en effet l'utilisation de valeurs de référence qui font l'objet d'une veille scientifique :

- les Valeurs Toxicologiques de Référence pour l'impact sanitaire sur l'Homme, valeurs sélectionnées selon les critères définis dans la note d'information n°DGS/EA/DGPR/2014/307 du 31/10/2014.
- les valeurs seuils ou valeurs guides issues des textes réglementaires ou des grilles de qualité d'eau, les données écotoxicologiques, en particulier les PNEC (Predicted No Effet Concentration), et les études testant la toxicité et l'écotoxicité des effluents CRT, pour l'analyse des incidences sur l'environnement. A noter que les PNEC sont validées par la R&D d'EDF après revue bibliographique exhaustive et, si nécessaire, réalisation de tests écotoxicologiques commandités par EDF et réalisés selon les normes OCDE et les Bonnes Pratiques de Laboratoire.

L'ensemble de ces évolutions scientifiques est intégré dans les études d'impact.

V. Bilan des incidents de fonctionnement et des évènements significatifs pour l'environnement

En 2003, le CNPE du Bugey a été certifié, pour la première fois, ISO 14001. L'obtention de la norme ISO 14001 est une reconnaissance internationale de la prise en compte de l'environnement dans l'ensemble des activités de l'entreprise. Elle est l'assurance d'une démarche d'amélioration continue et de la mise en place d'une organisation spécifique au domaine de l'environnement.

La protection de l'environnement, sur le terrain comme en laboratoire, a toujours été une priorité pour les CNPE d'EDF. Comme pour tous les sites industriels, les exigences environnementales fixées par le CNPE du Bugey et la réglementation se sont sans cesse accrues au fil des années. Cette certification est le fruit de l'implication de l'ensemble des intervenants - personnels EDF et d'entreprises externes - dans une démarche de respect de l'environnement.

La norme ISO 14001 repose sur la mise en œuvre d'un Système de Management Environnemental (SME). Cela signifie que la performance en matière de protection de l'environnement est intégrée dans l'organisation, c'est-à-dire dans toutes les décisions quotidiennes du CNPE du Bugey. L'ensemble des salariés du CNPE, ainsi que le personnel intervenant pour le compte d'entreprises extérieures, sont impliqués dans le respect de l'environnement.

Dans le cadre de l'amélioration continue, le CNPE du Bugey a mis en place un système permettant de détecter, tracer, déclarer, les Événements Significatifs pour l'Environnement (ESE) à l'Autorité de Sûreté Nucléaire, de traiter ces évènements et d'en analyser les causes profondes pour les éradiquer.

La déclaration d'ESE est établie à partir de critères précis et identiques sur tout le parc nucléaire. Ces critères sont définis par l'Autorité de Sûreté Nucléaire.

1. Bilan des évènements significatifs pour l'environnement déclarés

Le tableau suivant récapitule les évènements significatifs pour l'environnement déclarés par le CNPE du Bugey en 2020.

Typologie	Date	Description de l'évènement	Principales actions correctives
ESE9	20/01/2020	Inétanchéité de la ligne de remplissage des réservoirs de stockage des effluents pour contrôle avant rejet. Aucun impact sur l'environnement.	Pompage de l'effluent présent dans le caniveau, inspection de la tuyauterie et mise en place d'un système de surveillance et récupération des eaux recueillies dans le caniveau.
ESE6	09/11/2020	Emission de fluides frigorigènes utilisés dans les équipements frigorifiques ou climatiques : cumul annuel d'émission de fluides frigorigènes supérieur ou égal à 100 kg sur le site suite à 10 émissions ayant eu lieu entre janvier et novembre 2020. L'une d'entre elles a fait l'objet d'un EIE car les quantités sont supérieures à 20 kg. Total émis en 2020 : 130,4 kg soit 226,5 tonnes équivalent CO2. Ces gaz n'ont aucun impact sur la couche d'ozone mais contribuent à l'effet de serre. L'impact environnemental est modéré, compte tenu des faibles quantités émises et de leur étalement dans le temps.	Consécutivement aux émissions, des actions correctives (vidange, isolation des organes concernés) ont été mises en œuvre.
ESE2	28/12/2020	Dépassement de la limite réglementaire du flux annuel ajouté au canal de rejet 2-3 des métaux totaux de 55 kg en 2015, 2016, 2017, 2018, 2019 et 2020. Aucun impact sur l'environnement. Les limites réglementaires concernant la concentration maximale ajoutée dans le canal de rejet a été respectée (0,006 mg/L) ainsi que le flux 24h ajouté (< 2,4 kg). De plus, le CNPE dispose d'une limite portée à 235kg, en cas d'opération de démantèlement sur Bugey 1. Le flux annuel 2020 est de 59 kg.	Dépôt d'une demande visant à réviser cette limite en métaux totaux inadaptée au fonctionnement du CNPE.

2. Bilan des incidents de fonctionnement

Le CNPE du Bugey a eu, durant l'année 2020, des matériels indisponibles tels que : les dispositifs de traitement des effluents et de prélèvement, les dispositifs de mesure et de surveillance, les réparations des réservoirs d'entreposage d'effluents. Ces indisponibilités (fortuites mais surtout programmées pour réaliser la maintenance) n'ont pas eu d'incidence sur la qualité de la surveillance environnementale compte tenu de la redondance de nos matériels. Des remises en état rapides des matériels ont permis de limiter au maximum l'indisponibilité du matériel.

Durant l'année 2020 le CNPE du Bugey a observé des défaillances récurrentes sur les pompes du système de traitement des effluents primaires et quelques inétanchéités de vannes sur les systèmes d'entreposage des effluents radioactifs liquides et gazeux.

Le seuil réglementaire d'activité volumique à la cheminée des bâtiments des auxiliaires nucléaires (4 MBq/m³) n'a jamais été atteint sur le CNPE du Bugey en 2020.

Partie II - Prélèvements d'eau

L'eau est une ressource nécessaire au fonctionnement des CNPE et partagée avec de nombreux acteurs : optimiser sa gestion et concilier les usages est donc une préoccupation importante pour EDF.

Que cette eau soit prélevée en mer, dans un cours d'eau, ou dans des nappes d'eaux souterraines, son utilisation est strictement réglementée et contrôlée par les pouvoirs publics.

Dans un CNPE, l'eau est nécessaire pour :

- refroidir les installations,
- constituer des réserves pour réaliser des appoints ou disposer de stockage de sécurité dont l'alimentation des circuits de lutte contre les incendies (usage industriel),
- alimenter les installations sanitaires et les équipements de restauration des salariés (usage domestique).

Un CNPE en fonctionnement utilise trois circuits d'eau indépendants :

- le circuit primaire pour extraire la chaleur : c'est un circuit fermé parcouru par de l'eau sous pression (155 bars) et à une température de 300° C. L'eau passe dans la cuve du réacteur, capte la chaleur produite par la réaction de fission du combustible nucléaire et transporte cette énergie thermique vers le circuit secondaire au travers des générateurs de vapeur.
- le circuit secondaire pour produire la vapeur : au contact des milliers de tubes en « U » des générateurs de vapeur, l'eau du circuit primaire transmet sa chaleur à l'eau circulant dans le circuit secondaire, lui-aussi fermé. L'eau de ce circuit est ainsi transformée en vapeur qui fait tourner la turbine. Celle-ci entraîne l'alternateur qui produit l'électricité. Après son passage dans la turbine, la vapeur repasse à l'état liquide dans le condenseur ; cette eau est ensuite renvoyée vers les générateurs de vapeur pour un nouveau cycle.
- un troisième circuit, appelé « circuit de refroidissement » : pour condenser la vapeur et évacuer la chaleur, le circuit de refroidissement comprend un condenseur, appareil composé de milliers de tubes dans lesquels circule de l'eau froide prélevée dans la rivière ou la mer. Au contact de ces tubes, la vapeur se condense. Ce circuit de refroidissement peut être :
 - o un circuit de refroidissement totalement ouvert : l'eau (environ 50 m³ par seconde) est prélevée pour assurer le refroidissement des équipements via le condenseur. Une fois l'opération de refroidissement effectuée, l'eau qui n'est jamais entrée en contact avec la radioactivité, est intégralement restituée dans le milieu, à une température légèrement plus élevée.
 - o un circuit de refroidissement en partie fermé : le refroidissement de l'eau chaude issue du condenseur se fait par échange thermique avec de l'air ambiant dans une grande tour réfrigérante atmosphérique appelée « aéroréfrigérant ». Une partie de l'eau chaude se vaporise sous forme d'un panache visible, au sommet de la tour. Cette vapeur d'eau n'est pas une fumée, elle ne contient pas de CO2. Le reste de l'eau refroidie retourne dans le condenseur. Ce système avec aéroréfrigérants permet donc de réduire

considérablement les prélèvements d'eau qui sont alors de l'ordre de 2 m³ par seconde.

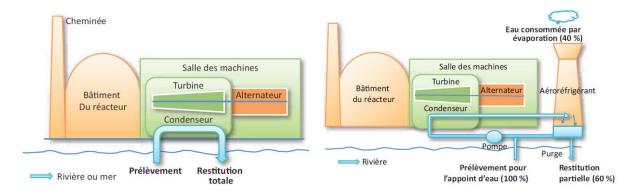


Figure 1 : Schéma d'un CNPE avec un circuit de refroidissement ouvert (à gauche) et fermé (à droite) (Source : EDF)

Annuellement, en moyenne, le volume d'eau nécessaire au fonctionnement du circuit de refroidissement d'un réacteur est compris entre 50 millions de mètres cubes (si le refroidissement est assuré par un aéroréfrigérant) et 1 milliard de mètres cubes (si l'eau est rejetée directement dans le milieu naturel) soit respectivement un besoin de 6 à 160 litres d'eau prélevés pour produire 1 kWh.

Que les CNPE soient en fonctionnement ou à l'arrêt, la très grande majorité de l'eau prélevée est restituée à sa source, c'est-à-dire au milieu naturel à proximité du point de prélèvement.

Les besoins en eau d'un CNPE servent majoritairement à assurer son refroidissement et, donc, à produire de l'électricité. Cependant, comme tous les sites industriels, un CNPE a besoin d'eau pour :

- faire face, si besoin, à un incendie : l'ensemble des CNPE d'EDF est équipé d'un important réseau d'eau sous pression permettant aux équipes des services de conduite et de la protection des CNPE d'EDF d'intervenir dès la détection d'un incendie jusqu'à l'arrivée des secours externes, et ainsi en limiter sa propagation. Ces réseaux sont régulièrement testés afin de s'assurer de leur fonctionnement et de leur efficacité.
- refroidir les matériels de l'Ilot Nucléaire, en cas d'événement similaire à celui survenu au CNPE de Fukushima-Daiichi : il a été décidé de mettre en place sur le CNPE du Bugey des puits de pompage en eau souterraine. Ces puits constituent un moyen complémentaire de pompage en eau d'ultime secours.
- se laver, boire et se restaurer : selon leur importance (de 2 à 6 réacteurs), les CNPE d'EDF accueillent de 600 à 2 000 salariés permanents (EDF et entreprises extérieures) auxquels s'ajoutent, lors d'un arrêt d'un réacteur pour maintenance, près de 1000 personnes supplémentaires. Les besoins en eau potable sont en permanence adaptés aux effectifs de salariés permanents et temporaires, tant pour les sanitaires que pour la restauration. Le CNPE du Bugey est relié au réseau d'eau potable de la commune de Saint-Vulbas.

I. Prélèvement d'eau destinée au refroidissement

Le tableau ci-dessous détaille le cumul mensuel du prélèvement d'eau dans le Rhône destiné au refroidissement de l'année 2020.

	Prélèvement d'eau (en
	milliers de m³)
Janvier	224 662
Février	142 886
Mars	146 490
Avril	148 085
Mai	150 244
Juin	110 354
Juillet	146 226
Août	233 466
Septembre	202 553
Octobre	151 498
Novembre	134 977
Décembre	76 828
TOTAL	1 868 269

II. Prélèvement d'eau destinée à l'usage industriel

Le tableau ci-dessous détaille le cumul mensuel du prélèvement d'eau dans le Rhône et dans les eaux souterraines destiné à l'usage industriel de l'année 2020.

	Prélèvement d'eau (en milliers de m³)
Janvier	49,4
Février	38,4
Mars	25,4
Avril	42,1
Mai	45,9
Juin	41,7
Juillet	52,2
Août	58,1
Septembre	33,9
Octobre	34,5
Novembre	37,5
Décembre	38,9
TOTAL	498

III. Prélèvement d'eau destinée à l'usage domestique

Le cumul annuel des prélèvements d'eau potable sur la commune de Saint-Vulbas destinés à usage domestique pour l'année 2020 est de 232 milliers de m³ (les données disponibles sont des relevés annuels).

IV. Milieu de prélèvement : comparaison pluriannuelle, prévisionnel, valeurs limites et maintenance

1. Comparaison au pluriannuel et au prévisionnel des prélèvements d'eau pour 2020

Le tableau ci-dessous permet un comparatif des valeurs de prélèvement des années 2018 à 2020 avec la valeur du prévisionnel 2020.

Année	Milieu	Volume (milliers de m³)
2018		2 981 252
2019	Eau douce superficielle	2 907 660
2020	(Rhône)	1 868 767
Prévisionnel 2020		2 480 000
2018		12,69
2019	Eau douce souterraine	1,47
2020	Ead douce souterraine	1,44
Prévisionnel 2020		(1)
2018		217
2019	Eau douce de réseau	230
2020	Eau douce de reseau	232
Prévisionnel 2020		(1)

(1) Pas de prévisionnel pour les prélèvements d'eau douce souterraine et d'eau douce de réseau en 2020

<u>Commentaires</u>: Le volume annuel d'eau douce superficielle prélevé est en deçà du prévisionnel qui avait été défini pour l'année 2020 compte tenu de la durée des arrêts des réacteurs 2 et 3, plus importante que prévu initialement.

Les prélèvements en eau douce souterraine depuis 2018 ont été effectués dans le cadre des travaux de création de puits de pompage en nappe phréatique, permettant au CNPE de disposer d'un moyen complémentaire de pompage en eau d'ultime secours pour refroidir les matériels de l'Ilot Nucléaire. Ces puits sont en exploitation depuis septembre 2020. Le prévisionnel de prélèvement d'eaux souterraines sera présenté à partir de l'année 2021.

2. Comparaison aux valeurs limites

Le tableau ci-dessous permet un comparatif des débits instantanés et des volumes d'eau prélevés cette année avec les valeurs limites de prélèvement fixées par la décision ASN n° 2014-DC-0442.

Milieu	Limites de pré	lèvement	Prélèvement	Unité
	Prescriptions Valeur		Valeur maximale	
	Débit instantané	106	102	m^3/s
Eau douce superficielle	Volume journalier	9,1 millions	8 812 800	m^3
	Volume annuel	3 300 millions	1 868 767 056	m³
Eau douce	Débit instantané	135*	32	m³/ h
souterraine	Volume journalier	2 200*	171	m^3
	Volume annuel	46 000*	1 438	m^3

<u>Commentaires</u>: *ces valeurs limites sont autorisées durant la phase de travaux et essais.

3. Principales opérations de maintenance intervenues sur les équipements et ouvrages de prélèvements

Dans le cadre du retour d'expérience de l'événement survenu au CNPE de Fukushima-Daiichi, il a été décidé de mettre en place, sur l'ensemble des CNPE, un moyen complémentaire de pompage en eau d'ultime secours pour les matériels de l'Ilot Nucléaire (bâches d'alimentation en eau de secours des générateurs de vapeur et piscines du bâtiment combustible et du bâtiment réacteur). Sur le CNPE du Bugey, la solution retenue est la réalisation de puits de pompage en nappe phréatique (1 puits par tranche). Les travaux ont démarré en 2018. Fin 2020 trois puits sur quatre sont en exploitation.

4. Opérations exceptionnelles de prélèvements

Le CNPE du Bugey n'a pas réalisé d'opération exceptionnelle de prélèvement d'eau dans le Rhône ni dans la nappe phréatique en 2020.

Partie III – Restitution et consommation d'eau

I. Restitution d'eau

La restitution d'eau du CNPE du Bugey pour l'année 2020 est présentée dans le tableau ci-dessous.

		Restitution d'eau						
		Eau de refroidissement	Rejets industriels	Rejets Eaux usées	Unités			
	Restitution au milieu aquatique	1 839 805	387	74	milliers de m³			
TOTAL par type de restitution	Pourcentage de restitution d'eau au milieu aquatique par rapport au prélèvement	98,5	77,7	31,9	%			
	Restitution au milieu aquatique		1 840 266		milliers de m³			
TOTAL TOTAL TOTAL TOTAL Aquatique Pourcentage de restitution d'eau au milieu aquatique par rapport au prélèvement			%					

II. Consommation d'eau

La consommation d'eau correspond à la différence entre la quantité d'eau prélevée et la quantité d'eau restituée au milieu aquatique. Le cumul annuel de consommation d'eau de l'année 2020 est de 28 733 milliers de m³.

Cette consommation correspond essentiellement à l'eau évaporée dans les tours aéroréfrigérantes.

Partie IV - Rejets d'effluents

Comme beaucoup d'autres activités industrielles, l'exploitation d'un CNPE entraîne des rejets d'effluents à l'atmosphère et par voie liquide. Une réglementation stricte encadre ces différents rejets, qu'ils soient radioactifs ou non.

Chaque CNPE a mis en place une organisation afin d'assurer une gestion optimisée des effluents visant notamment à :

- réduire à la source la production d'effluents, notamment par le recyclage,
- réduire les rejets de substances radioactives ou chimiques au moyen de traitements appropriés,
- optimiser la production de déchets et valoriser les déchets conventionnels qui peuvent l'être.

Les rejets d'effluents se présentent sous différentes formes :

- les rejets radioactifs liquides et atmosphériques, qui peuvent être répartis en cinq catégories :
 - o Tritium,
 - o Carbone 14,
 - o lode,
 - o Autres produits de fission ou d'activation,
 - Gaz rares.
- les rejets chimiques liquides classés en deux catégories :
 - les rejets de substances chimiques associées aux effluents radioactifs liquides ou eaux non radioactives issues des salles des machines,
 - les rejets de produits issus des autres circuits non radioactifs (circuit de refroidissements des condenseurs, station de déminéralisation, station d'épuration).
- les rejets chimiques atmosphériques : un CNPE émet peu de substances chimiques par voie atmosphérique. Les quelques émissions proviennent des groupes électrogènes de secours constitués de moteurs diesels ou de turbines à combustion consommant du gasoil, de pertes de fluides frigorigènes, du renouvellement de calorifuges dans le bâtiment réacteur et d'émanations de certaines substances volatiles utilisées pour la protection et le traitement des circuits.
- les rejets thermiques : quel que soit le mode de refroidissement (ouvert ou fermé) d'un CNPE, l'échauffement du milieu aquatique est limité par la réglementation propre à chaque CNPE.

Optimisés, réduits, traités et surveillés, les rejets d'effluents radioactifs atmosphériques et liquides génèrent une exposition des populations plus de 100 fois inférieure à la limite réglementaire d'exposition reçue par une personne du public fixée à 1mSv/an dans l'article R1333-8 du code de la santé publique

I. Rejets d'effluents à l'atmosphère

1. Rejets d'effluents à l'atmosphère radioactifs

Pour les tranches en fonctionnement, il existe deux sources de rejets d'effluents radioactifs à l'atmosphère :

- les effluents dits « hydrogénés » proviennent du dégazage des effluents liquides issus du circuit primaire. Afin d'éviter tout mélange avec l'oxygène de l'air, ces effluents hydrogénés sont collectés et stockés, au minimum 30 jours dans des réservoirs où une surveillance régulière est effectuée. Durant ce temps, la radioactivité décroît naturellement, ce qui réduit d'autant l'impact environnemental. Les effluents sont contrôlés avant leur rejet. Pendant leur rejet, ils subissent systématiquement des traitements tels que la filtration à Très Haute Efficacité (filtres THE) qui permet de retenir les poussières radioactives. Ces rejets occasionnels sont dits « concertés ».
- Les effluents dits « aérés » qui proviennent de la collecte des évents des circuits de traitement des effluents liquides radioactifs, de la dépressurisation du bâtiment du réacteur ainsi que de l'air de la ventilation des locaux de l'îlot nucléaire. La ventilation maintient les locaux en légère dépression par rapport à l'extérieur et évite ainsi les pertes de gaz ou de poussières contaminées vers l'environnement. Les opérations de dépressurisation de l'air du bâtiment réacteur conduisent à des rejets dits « concertés». L'air de ventilation transite par des filtres THE et, dans certains circuits, sur des pièges à iodes à charbon actif avant d'être rejeté en continu à la cheminée. Ces rejets sont dits « permanents ».

Ces deux types d'effluents sont rejetés dans l'atmosphère par une cheminée dédiée pour chaque paire de tranches à la sortie de laquelle est réalisé, en permanence, un contrôle de l'activité rejetée.

Les cinq catégories de radionucléides réglementés dans les rejets d'effluents à l'atmosphère sont les gaz rares, le tritium, le carbone 14, les iodes et les autres produits de fission (PF) et produits d'activation (PA) :

- Les principaux gaz rares issus de la réaction de fission sont le xénon 133, le xénon 135, le krypton 85 et le xénon 131. Ce sont des gaz inertes, ils ne sont donc pas retenus par les systèmes de filtration (filtres très haute efficacité THE et pièges à iodes).
- Le tritium est un isotope radioactif de l'hydrogène. C'est un émetteur bêta (électron) de faible énergie. Il est très majoritairement issu de l'activation neutronique d'éléments tels que le bore 10 et le lithium 6 présents dans le fluide primaire.
- Le carbone 14 présent dans les rejets des CNPE est produit essentiellement par activation de l'oxygène 17 présent dans l'eau du circuit primaire. Une part plus faible est produite par l'activation de l'azote 14 dissous dans l'eau du circuit primaire.
- Les iodes présents dans les rejets d'effluents radioactifs du CNPE (principalement l'iode 131 et l'iode 133) sont des produits de fission, créés dans le combustible par fission des atomes d'uranium ou de plutonium.
- Les autres produits de fission (PF) et produits d'activation (PA) émetteurs β ou γ , correspondent principalement au césium et au cobalt.

Pour les autres installations nucléaires du CNPE (l'unité en déconstruction Bugey 1 et l'ICEDA), les effluents sont issus de la ventilation des zones nucléaires et des procédés mis en œuvre dans l'installation. Les effluents sont canalisés, filtrés et surveillés en continu. Le rejet est réalisé par des cheminées dédiées de l'installation.

a. Règles spécifiques de comptabilisation

Ces règles s'appuient en premier lieu sur la définition de « spectres de référence », en fonction du type de rejet (liquides ou atmosphériques). Ces rejets sont constitués d'une liste de radionucléides à identifier par les moyens de mesure adéquats. Cette liste a été déterminée

par une étude réalisée de 1996 à 1999 sur l'ensemble du parc des CNPE d'EDF. Toutes les substances figurant dans plus de 90 % des analyses figurent dans cette liste. Des radionucléides comme l'iode, peu présent dans les rejets, figurent également dans cette liste, mais pour des raisons historiques.

La deuxième règle fondamentale consiste à déclarer obligatoirement une activité rejetée pour les radionucléides appartenant à ces différents « spectres de référence ». Les radionucléides dont l'activité mesurée est inférieure au seuil de décision¹ (SD) donnent lieu à une comptabilisation d'activité rejetée égale au SD.

Les cumuls mensuels sont établis par sommation des activités rejetées pour chacun des rejets d'effluents du mois considéré. Les cumuls annuels sont égaux à la somme des cumuls mensuels.

b. Spectre de référence des rejets radioactifs à l'atmosphère

Le bilan des rejets d'effluents réalisés à l'atmosphère est déterminé pour chacune des cinq familles de radionucléides réparties comme suit :

- les gaz rares,
- le Tritium,
- le Carbone 14,
- les lodes.
- les autres produits de fission ou d'activation émetteurs bêta et/ou gamma (PF-PA).

Le tableau ci-dessous est un rappel du spectre de référence des rejets radioactifs à l'atmosphère.

Paramètres	Radionucléide				
	⁴¹ Ar				
	⁸⁵ Kr				
Gaz rares	^{131m} Xe				
Gaziales	¹³³ Xe				
	¹³⁵ Xe				
	^{133m} Xe				
Tritium	³ H				
Carbone 14	¹⁴ C				
lodes	131				
lodes	133				
	⁵⁸ Co				
Produits de fission et	⁶⁰ Co				
d'activation	¹³⁴ Cs				
	¹³⁷ Cs				

¹ D'après le Bilan de l'état radiologique de l'environnement français de l'IRSN : « Le seuil de décision est la valeur minimale que doit avoir la mesure d'un échantillon pour que le métrologiste puisse « décider » que cette activité est présente et donc mesurée. En dessous de cette valeur, l'activité de l'échantillon est donc trop faible pour être estimée. Ce seuil de décision dépend de la performance et du rayonnement ambiant autour des moyens métrologiques utilisés. »

Pour les autres installations nucléaires du CNPE (l'unité en déconstruction Bugey 1 et l'ICEDA), le spectre de référence est rappelé ci-dessous.

Installation	Paramètres	Radionucléide		
	Tritium	³ H		
	Carbone 14	¹⁴ C		
	Draduita da finaian at	⁶⁰ Co		
	Produits de fission et d'activation	⁵⁵ Fe		
Bugey 1	d activation —	⁶³ Ni		
		²³⁸ Pu		
	A lasta a	²³⁹ Pu		
	Alpha -	²⁴⁰ Pu		
		²⁴¹ Am		
		^{108m} Ag		
ICEDA	Produits de fission et	⁶⁰ Co		
ICEDA	d'activation	⁵⁵ Fe		
		⁶³ Ni		

c. Cumul mensuel

Les cumuls mensuels des rejets à l'atmosphère d'effluents radioactifs, pour les tranches en fonctionnement, sont donnés dans le tableau suivant pour les produits de fission et d'activation, les gaz rares et les iodes.

	⁴¹ Ar	⁸⁵ Kr	^{131m} Xe	¹³³ Xe	¹³⁵ Xe	131	133	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs	¹³⁷ Cs	110mAg	¹²⁴ Sb
	(GBq)	(GBq) (GBq) (GBq	(GBq)	Bq) (GBq) (GB	(GBq)	(GBq) (GBq)	(GBq) ((GBq)	(GBq)	(GBq)	(GBq)	(GBq)	(GBq)
Janvier	7,06.10 ¹	6,98.10 ⁻³	6,02.10 ⁻³	1,90.10 ¹	1,39.10 ¹	3,19.10-4	7,33.10-4	6,90.10 ⁻⁵	7,51.10 ⁻⁵	6,68.10 ⁻⁵	6,80.10 ⁻⁵	-	-
Février	2,88	8,71.10-1	1,40.10-2	2,01.10 ¹	1,19.10 ¹	1,52.10 ⁻³	1,03.10 ⁻³	7,70.10 ⁻⁵	8,53.10 ⁻⁵	7,02.10 ⁻⁵	8,07.10 ⁻⁵	-	-
Mars	2,03	8,31.10-1	3,69.10-4	2,12.10 ¹	1,31.10 ¹	1,52.10-4	1,23.10 ⁻³	8,96.10-5	8,34.10 ⁻⁵	7,32.10 ⁻⁵	7,92.10 ⁻⁵	-	-
Avril	7,64.10 ⁻¹	4,41.10-1	2,61.10 ⁻³	2,06.10 ¹	1,53.10 ¹	2,23.10-4	8,32.10-4	8,10.10 ⁻⁵	9,30.10 ⁻⁵	8,03.10 ⁻⁵	8,81.10 ⁻⁵	7,50.10 ⁻⁵	-
Mai	6,08	2,93.10-1	5,43.10 ⁻³	2,11.10 ¹	1,48.10 ¹	1,13.10-4	6,16.10-4	6,44.10 ⁻⁵	9,11.10 ⁻⁵	6,31.10 ⁻⁵	7,72.10-5	-	-
Juin	9,82	2,81.10-2	1,57.10 ⁻³	1,93.10 ¹	1,47.10 ¹	5,62.10 ⁻³	6,69.10-4	7,11.10 ⁻⁵	7,59.10 ⁻⁵	6,54.10 ⁻⁵	7,41.10 ⁻⁵	-	-
Juillet	1,69.10 ¹	3,84.10-2	2,27.10 ⁻³	1,94.10 ¹	1,71.10 ¹	6,93.10-4	8,00.10-4	5,47.10 ⁻⁵	6,55.10 ⁻⁵	4,94.10 ⁻⁵	5,56.10 ⁻⁵	-	3,83.10 ⁻⁵
Août	1,49.10 ¹	1,73.10 ⁻³	2,25.10-4	2,03.10 ¹	1,83.10 ¹	4,41.10-4	6,46.10-4	7,53.10 ⁻⁵	8,44.10 ⁻⁵	8,18.10 ⁻⁵	9,02.10 ⁻⁵	-	-
Septembre	3,68	2,48.10-2	2,35.10 ⁻³	3,05.10 ¹	2,25.10 ¹	1,56.10-4	7,85.10-4	6,80.10 ⁻⁵	9,02.10 ⁻⁵	6,19.10 ⁻⁵	7,29.10 ⁻⁵	-	-
Octobre	7,85	1,13.10 ⁻²	7,79.10 ⁻³	2,11.10 ¹	1,65.10 ¹	1,21.10 ⁻³	1,02.10 ⁻³	5,36.10 ⁻⁵	5,57.10 ⁻⁵	5,45.10 ⁻⁵	6,44.10 ⁻⁵	-	-
Novembre	2,51.10 ¹	2,95.10 ⁻³	4,09.10-4	2,24.10 ¹	1,51.10 ¹	1,38.10-4	7,75.10-4	6,05.10 ⁻⁵	6,92.10 ⁻⁵	6,47.10 ⁻⁵	6,83.10 ⁻⁵	-	-
Décembre	4,55	9,83.10 ⁻³	1,89.10 ⁻³	2,16.10 ¹	1,51.10 ¹	2,50.10-4	1,04.10 ⁻³	5,07.10 ⁻⁵	6,88.10 ⁻⁵	4,90.10 ⁻⁵	6,08.10 ⁻⁵	-	-
TOTAL ANNUEL	1,65.10 ²	2,56	4,50.10 ⁻²	2,57.10 ²	1,88.10 ²	1,08.10-2	1,02.10-2	8,15.10-4	9,37.10-4	7,80.10-4	8,79.10-4	7,50.10 ⁻⁵	3,83.10 ⁻⁵

	Volumes	Activités	Activité	Activité	Activités	Activités
	rejetés	gaz rares	Tritium	Carbone 14	lodes	Autres PF et
	(m³)	(GBq)	(GBq)	(GBq)	(GBq)	PA (GBq)
Janvier	3,63.108	1,04.10 ²	5,59.10 ¹		1,05.10 ⁻³	2,79.10-4
Février	3,52.108	3,58.10 ¹	6,18.10 ¹	1,95.10 ²	2,55.10 ⁻³	3,13.10-4
Mars	3,84.108	3,72.10 ¹	5,24.10 ¹		1,38.10 ⁻³	3,26.10-4
Avril	3,75.108	3,71.10 ¹	4,04.10 ¹		1,06.10 ⁻³	4,17.10-4
Mai	3,64.108	4,22.10 ¹	4,24.10 ¹	5,81.10 ¹	7,28.10-4	2,96.10-4
Juin	3,57.108	4,39.10 ¹	5,82.10 ¹		6,29.10 ⁻³	2,87.10-4
Juillet	3,72.108	5,34.10 ¹	1,23.10 ²		1,49.10 ⁻³	2,64.10-4
Août	3,86.108	5,35.10 ¹	6,28.10 ¹	3,22.10 ¹	1,09.10 ⁻³	3,32.10-4
Septembre	3,68.108	5,66.10 ¹	5,31.10 ¹		9,41.10-4	2,93.10-4
Octobre	4,11.108	4,55.10 ¹	4,58.10 ¹		2,23.10 ⁻³	2,28.10-4
Novembre	3,79.108	6,25.10 ¹	4,29.10 ¹	7,79.10 ¹	9,13.10-4	2,63.10-4
Décembre	3,94.108	4,12.10 ¹	6,58.10 ¹		1,29.10 ⁻³	2,29.10-4
TOTAL ANNUEL	4,51.10 ⁹	6,13.10 ²	7,05.10 ²	3,63.10 ²	2,10.10 ⁻²	3,53.10 ⁻³

Il a été vérifié que les rejets ne présentent pas d'activité volumique alpha globale d'origine artificielle supérieure aux seuils de décision.

Il a été vérifié que les rejets au niveau des cheminées annexes ne présentent pas d'activité volumique bêta globale d'origine artificielle supérieure à celle naturellement présente dans l'air ambiant.

Pour l'unité en déconstruction Bugey 1, les cumuls mensuels sont donnés dans le tableau suivant pour les produits de fission et d'activation.

	⁶⁰ Co (GBq)	⁶³ Ni (GBq)	⁵⁵ Fe (GBq)
Janvier	1,17.10 ⁻⁵	1,50.10 ⁻⁵	7,10.10 ⁻⁶
Février	1,49.10 ⁻⁵	1,82.10 ⁻⁵	1,12.10 ⁻⁵
Mars	1,64.10 ⁻⁵	1,72.10 ⁻⁵	6,93.10 ⁻⁶
Avril	1,13.10 ⁻⁵	1,59.10 ⁻⁵	5,89.10 ⁻⁶
Mai	1,79.10 ⁻⁵	1,54.10 ⁻⁵	1,17.10 ⁻⁵
Juin	1,43.10 ⁻⁵	2,27.10 ⁻⁵	7,22.10 ⁻⁶
Juillet	1,67.10 ⁻⁵	1,44.10 ⁻⁵	6,31.10 ⁻⁶
Août	1,32.10 ⁻⁵	1,53.10 ⁻⁵	6,60.10 ⁻⁶
Septembre	1,45.10 ⁻⁵	1,85.10 ⁻⁵	1,68.10 ⁻⁵
Octobre	1,50.10 ⁻⁵	1,46.10 ⁻⁵	2,00.10 ⁻⁵
Novembre	9,67.10 ⁻⁶	1,65.10 ⁻⁵	2,30.10 ⁻⁵
Décembre	9,99.10 ⁻⁶	1,59.10 ⁻⁵	2,19.10 ⁻⁵
TOTAL ANNUEL	1,66.10 ⁻⁴	1,99.10 ⁻⁴	1,45.10 ⁻⁴

	Volumes rejetés (m³)	Activité Tritium (GBq)	Activité Carbone 14 (GBq)	Activités Autres PF et PA (GBq)	Activités émetteurs Alpha (GBq)
Janvier	4,76.10 ⁷	7,49.10-2		3,38.10 ⁻⁵	7,95.10 ⁻⁷
Février	4,79.10 ⁷	3,33.10-2	4,67.10 ⁻²	4,43.10 ⁻⁵	9,23.10 ⁻⁷
Mars	5,03.10 ⁷	2,02.10-2		4,05.10 ⁻⁵	7,75.10 ⁻⁷
Avril	4,79.10 ⁷	3,21.10-2		3,31.10 ⁻⁵	9,06.10 ⁻⁷
Mai	4,94.10 ⁷	1,78.10 ⁻²	2,48.10-2	4,50.10 ⁻⁵	7,51.10 ⁻⁷
Juin	4,86.10 ⁷	1,85.10-2		4,42.10 ⁻⁵	7,71.10 ⁻⁷
Juillet	5,03.10 ⁷	2,06.10-2		3,74.10 ⁻⁵	8,50.10 ⁻⁷
Août	5,04.10 ⁷	1,73.10-2	3,92.10 ⁻¹	3,51.10 ⁻⁵	1,07.10 ⁻⁷
Septembre	4,99.10 ⁷	1,72.10-2		4,97.10 ⁻⁵	8,72.10 ⁻⁷
Octobre	5,19.10 ⁷	1,46.10-2		4,96.10 ⁻⁵	9,14.10 ⁻⁷
Novembre	5,07.10 ⁷	1,60.10-2	1,00.10 ⁻¹	4,92.10 ⁻⁵	1,05.10 ⁻⁶
Décembre	5,16.10 ⁷	1,40.10-2		4,78.10 ⁻⁵	8,34.10 ⁻⁷
TOTAL ANNUEL	5,97.10 ⁸	2,97.10 ⁻¹	5,63.10 ⁻¹	5,10.10 ⁻⁴	1,05.10 ⁻⁵

Pour l'ICEDA, les cumuls mensuels sont donnés dans le tableau suivant pour les produits de fission et d'activation.

	⁶⁰ Co	^{108m} Ag	⁶³ Ni (GBq)	⁵⁵ Fe (GBq)
	(GBq)	(GBq)	(3 54)	10 (024)
Janvier	-	-	-	-
Février	-	-	-	-
Mars	-	-	-	-
Avril	-	-	-	-
Mai	-	-	-	-
Juin	-	-	-	-
Juillet	-	-	-	-
Août	-	-	-	-
Septembre	1,32.10 ⁻⁵	1.32.10 ⁻⁵	1,10.10-4	8,43.10 ⁻⁵
Octobre	1,84.10 ⁻⁵	1.84.10 ⁻⁵	2,55.10 ⁻⁵	1,90.10 ⁻⁵
Novembre	1,70.10 ⁻⁵	1.70.10 ⁻⁵	2,59.10 ⁻⁵	3,52.10 ⁻⁵
Décembre	9,60.10 ⁻⁶	8.13.10 ⁻⁶	3,05.10 ⁻⁵	3,32.10 ⁻⁵
TOTAL ANNUEL	5,82.10 ⁻⁵	5.67.10 ⁻⁵	1,92.10-4	1,72.10-4

	Volumes rejetés (m³)	Activité Tritium (GBq)	Activité Carbone 14 (GBq)	Activités Autres PF et PA (GBq)
Janvier	0	0	0	0
Février	0	0	0	0
Mars	0	0	0	0
Avril	0	0	0	0
Mai	0	0	0	0
Juin	0	0	0	0
Juillet	0	0	0	0
Août	0	0	0	0
Septembre	6,39.10 ⁷	1,70.10-2	7,03.10 ⁻³	2,20.10-4
Octobre	7,73.10 ⁷	1,76.10 ⁻²		8,13.10 ⁻⁵
Novembre	7,36.10 ⁷	1,95.10 ⁻²	2,01.10 ⁻²	9,51.10 ⁻⁵
Décembre	7,51.10 ⁷	1,78.10 ⁻²	1	8,14.10 ⁻⁵
TOTAL ANNUEL	2,90.10 ⁸	7,19.10 ⁻²	2,71.10 ⁻²	4,78.10-4

d. Comparaison pluriannuelle et au prévisionnel

Le tableau ci-dessous permet un comparatif des valeurs de rejets de l'année 2020 avec les valeurs des années précédentes et celles du prévisionnel 2020 pour les tranches en fonctionnement.

	Rejets par catégorie de radionucléides (GBq)							
Année	Gaz rares	Tritium	Carbone 14	lodes	Autres produits de fission et d'activation			
2018	704	727	594	0,037	0,003			
2019	777	822	468	0,036	0,003			
2020	613	705	363	0,021	0,004			
Prévisionnel 2020	800	700	600	0,05	0,003			

<u>Commentaires</u>: Les rejets à l'atmosphère en gaz rares, tritium, carbone 14 et iodes sont cohérents avec les valeurs du prévisionnel 2020.

Pour ce qui est des PF-PA, le dépassement s'explique par la modification des procédures de comptabilisation des radio-éléments.

Le tableau ci-dessous permet un comparatif des valeurs de rejets de l'année 2020 avec les valeurs des années précédentes et celles du prévisionnel 2020 pour l'unité en déconstruction Bugey 1 et pour l'ICEDA.

		Rejets par catégorie de radionucléides (GBq)					
Installation	Année	Tritium	Carbone 14	Autres produits de fission et d'activation	Emetteurs Alpha		
	2018	1,22	0,87	5,88.10-4	1,83.10 ⁻⁵		
	2019	0,48	0,64	4,76.10 ⁻⁴	1,2.10 ⁻⁵		
Bugey 1	2020	0,30	0,56	5,10.10 ⁻⁴	1,05.10 ⁻⁵		
	Prévisionnel 2020	2	1	5.10 ⁻⁴	2.10 ⁻⁵		
ICEDA	2020	0,072	0,027	4,78.10-4	-		
	Prévisionnel 2020	8	0,2	0,002	-		

<u>Commentaires</u>: Les rejets radioactifs à l'atmosphère sont cohérents avec les valeurs du prévisionnel 2020.

e. Comparaison aux valeurs limites

Le tableau ci-dessous permet un comparatif des valeurs de rejets de l'année 2020 avec les valeurs limites de rejets fixées par la décision ASN n° 2014-DC-0443.

		Limites annue	Rejet		
Paramètres	Localisation	Prescriptions	Valeur	Valeur maximale	
T dramotros	prélèvement	Trocomparono	valoai	valour maximalo	
	Réacteurs		50 000 000	2,89.10 ⁵	
	n°2 et 3	Débit d'activité		_,001.0	
	Réacteurs	(Bq/s)	50 000 000	4,12.10 ⁵	
Gaz rares	n°4 et 5	(1 /		·	
	Global site		100 000 000	4,97.10 ⁵	
	Réacteurs	Activité	60,000	0.40.402	
	n°2-3-4-5	annuelle rejetée (GBq)	60 000	6,13.10 ²	
	Réacteur n°1	rejetee (ODq)	1,5	5,63.10 ⁻¹	
	Réacteurs	Activité			
Carbone 14	n°2-3-4-5	annuelle	2 200	3,63.10 ²	
	ICEDA	rejetée (GBq)	2	2,71.10 ⁻²	
	Réacteur n°1		110 000	5,73.10 ¹	
	Réacteurs		4 400 000	·	
	n°2 et 3		4 400 000	9,14.10 ⁴	
	Réacteurs	Débit d'activité	4 400 000	2 42 404	
Tritium	n°4 et 5	(Bq/s)	4 400 000	2,42.10 ⁴	
	ICEDA		1 100 000	9,55	
	Global site		10 000 000	1,06.10 ⁵	
	Réacteur n°1	A 1. 1. 7	100	2,97.10 ⁻¹	
	Réacteurs	Activité annuelle	8 000	7,05.10 ²	
	n°2-3-4-5	rejetée (GBq)	8 000	·	
	ICEDA	. 0,0100 (024)	1 000	7,19.10 ⁻²	
	Réacteurs		500	7,20	
	n°2 et 3	Débit		.,20	
	Réacteurs	instantané	500	2,21	
lodes	n°4 et 5	(Bq/s)		·	
	Global site		1 000	7,40	
	Réacteurs	Activité annuelle	1,2	2 10 10-2	
	n°2-3-4-5	rejetée (GBq)	1,2	2,10.10 ⁻²	
	Réacteur n°1	10,0100 (0.04)	480	9,50.10 ⁻³	
	Réacteurs				
	n°2 et 3	Débit	170	2,01.10 ⁻¹	
Autres	Réacteurs	instantané	470	0 E7 40-2	
produits de	n°4 et 5	(Bq/s)	170	9,57.10 ⁻²	
fission et	ICEDA		180	2,29.10 ⁻²	
produits	Global site		1 000	2,78.10 ⁻¹	
d'activation	Réacteur n°1	A - 41 - 14 /	0,4	5,10.10 ⁻⁴	
	Réacteurs	Activité annuelle	0.29	3,53.10 ⁻³	
	n°2-3-4-5	rejetée (GBq)	0,28	3,00.10	
	ICEDA	, (324)	0,15	4,78.10 ⁻⁴	

		Limites annu	Rejet	
Paramètres	Localisation prélèvement	Prescriptions	Valeur	Valeur maximale
Alpha	Réacteur n°1	Activité annuelle rejetée (GBq)	0,00015	1,05.10⁻⁵

<u>Commentaires</u>: Les rejets radioactifs à l'atmosphère respectent les valeurs limites de rejets de la décision ASN n°2014-DC-0443. Les débits instantanés ont respecté les valeurs de la décision ASN n°2014-DC-0443 tout au long de l'année 2020.

2. Evaluation des rejets diffus d'effluents radioactifs à l'atmosphère

Les rejets radioactifs diffus ont notamment pour origine :

- les évents de réservoirs d'entreposage des effluents radioactifs (T, S), le réservoir de stockage de l'eau borée pour le remplissage des piscines,
- les rejets de vapeur du circuit secondaire par le système de décharge à l'atmosphère, susceptibles de renfermer de la radioactivité en cas d'inétanchéité des tubes de générateurs de vapeur.

Ces rejets, ne transitant pas par la cheminée instrumentée, sont dits « diffus », et font l'objet d'une estimation mensuelle par calcul visant notamment à s'assurer de leur caractère négligeable.

Les cumuls mensuels des rejets diffus d'effluents radioactifs à l'atmosphère est donnée dans le tableau suivant.

	Volume (m³)	Rejets de vapeur du circuit secondaire		Rejets au niveau des évents des réserve d'eau de refroidissement des piscines d'entreposage des effluents liquides	
	()	Tritium (Bq)	lodes (Bq)	Tritium (Bq)	lodes (Bq)
Janvier	3,01.104	0	0	7,88.10 ⁷	0
Février	1,77.104	0	0	4,39.10 ⁷	0
Mars	1,51.10 ⁴	0	0	3,90.10 ⁷	0
Avril	1,94.104	0	0	6,33.10 ⁷	0
Mai	2,40.104	0	0	4,31.10 ⁷	5,33.10 ¹
Juin	2,68.104	0	0	3,85.10 ⁷	0
Juillet	3,09.104	6,71.10 ⁷	0	3,19.10 ⁷	0
Août	1,80.104	7,25.10 ⁷	0	2,86.10 ⁷	0
Septembre	1,72.104	0	0	2,86.10 ⁷	0
Octobre	2,27.104	0	0	5,37.10 ⁷	0
Novembre	2,30.104	0	0	4,24.10 ⁷	0
Décembre	1,40.104	0	0	2,44.10 ⁷	0
TOTAL ANNUEL	2,59.10 ⁵	1,40.108	0	5,16.10 ⁸	5,33.10 ¹

3. Evaluation des rejets diffus d'effluents à l'atmosphère non radioactifs

Les CNPE engendrent également des rejets d'effluents à l'atmosphère non radioactifs dont les origines sont :

- Le lessivage chimique des générateurs de vapeur : l'encrassement des générateurs de vapeur peut nécessiter un lessivage chimique à l'origine de rejets chimiques à l'atmosphère (ammoniac...) qui nécessitent une autorisation administrative ; ces rejets sont, soit mesurés, soit estimés par calcul en fonction des quantités de produits chimiques utilisés.
- Les émissions des groupes électrogènes de secours : les groupes électrogènes de secours composés de moteurs diesel, les Turbines à Combustion (TAC) et les Diesels d'Ultime Secours (DUS) fonctionnant au gasoil sont destinés uniquement à alimenter des systèmes de sécurité et/ou à prendre le relais de l'alimentation électrique principale en cas de défaillance de celle-ci. Ils ont donc un rôle majeur en termes de sûreté nucléaire. Les émissions des gaz de combustion (SOx) de ces matériels de petites puissances sont faibles sachant qu'ils ne fonctionnent que peu de temps (moins de 50 h/an par diesel) lors des essais périodiques ou d'incidents.
- Les émissions de fluides frigorigènes. En effet, un CNPE est équipé de groupes frigorifiques pour assurer la production d'eau glacée et pour la réfrigération des locaux techniques et administratifs. Ces matériels utilisent des produits pouvant accroître l'effet de serre. Le fonctionnement des matériels et les opérations de maintenance conduisent à des émissions de fluides frigorigènes. Ces émissions sont réglementairement déclarées et comptabilisées et des actions sont prises pour les limiter.
- Les opérations de maintenance effectuées dans les bâtiments réacteurs des CNPE : Lors de ces opérations, une quantité plus ou moins importante de calorifuges est changée par des produits neufs. Pendant les phases de montée en température correspondant à la remise en service des installations, certains types de calorifuges émettent, par dégradation thermique, des vapeurs formolées dans l'enceinte, qui peuvent être à l'origine de rejets de monoxyde de carbone.
- Le conditionnement de circuit à l'arrêt : à l'occasion des arrêts de tranche pour une durée supérieure à une semaine, la conservation humide des générateurs de vapeur permet de s'affranchir du risque de corrosion des matériaux constitutifs et de disposer d'une barrière biologique (écran d'eau) pour réaliser des travaux environnants. Les générateurs de vapeur sont alors remplis avec de l'eau déminéralisée conditionnée à l'hydrazine et additionnée avec de l'ammoniaque dans des proportions définies dans les spécifications chimiques de conservation à l'arrêt.

a. Rejets d'oxyde de soufre et d'azote

La quantité annuelle évaluée d'oxyde de soufre (SOx) rejetée dans l'atmosphère lors du fonctionnement périodique des groupes électrogènes de secours (moteurs Diesels) ayant consommé 164 m³ de carburant (GNR), de la turbine à combustion (TAC) ayant consommé 5 m³ de kérosène et des diesels d'ultime secours (DUS) ayant consommé 120 m³ de GNR, au total sur les 4 tranches pour 2020 est de :

Paramètre	Unité	Groupes électrogènes	TAC	DUS	TOTAL
SOx	kg	3	25	2	31

b. Rejets de formaldéhyde et de monoxyde de carbone

En 2020, 62 m³ de calorifuges ont été renouvelés dans les enceintes des bâtiments réacteurs 2, 3 et 5.

Ce volume donne une estimation des concentrations maximales ajoutées dans l'atmosphère.

Concentration calculée	Unité	Paramètres	EBA	ETY
Concentration maximale ajoutée dans l'atmosphère		Formaldéhyde	6,8.10 ⁻³	1,6.10-4
	mg/m³	Monoxyde de carbone	6,3.10 ⁻³	1,5.10-4

c. Rejets de substances volatiles en lien avec le conditionnement de circuits à l'arrêt

L'estimation du rejet des espèces volatiles est la suivante :

Paramètre	Unité	TOTAL
Ammoniac	lea.	154
Morpholine	kg	33

d. Bilan des émissions gaz à effet de serre et de fluides frigorigènes

Un bilan des émissions de gaz à effet de serre et de fluides frigorigènes est réalisé annuellement par le CNPE du Bugey.

L'estimation des émissions de gaz à effet de serre et de fluides frigorigènes est la suivante :

Paramètre	Unité	TOTAL
Chloro-fluoro-carbone (CFC)		0
Hydrogéno-chloro-fluor-carbone (HCFC)	Ka	0
Hydrogéno-fluoro-carbone (HFC)	- Kg	130,4
Hexafluorure de soufre (SF6)		3,1

4. Principales opérations de maintenance intervenues sur les équipements et ouvrages de rejets d'effluents à l'atmosphère

L'année 2020 n'a pas été concernée par des actions de maintenance (hors maintenance programmée) et aucune intervention ou opération de maintenance anticipée n'ont été nécessaires.

5. Opérations exceptionnelles de rejets d'effluents à l'atmosphère

Le CNPE du Bugey n'a pas réalisé d'opération exceptionnelle de rejets d'effluents à l'atmosphère en 2020.

II. Rejets d'effluents liquides

1. Rejets d'effluents liquides radioactifs

Lorsque l'on exploite un CNPE en fonctionnement, des effluents liquides radioactifs sont produits :

- Les effluents provenant du circuit primaire dits « effluents primaires hydrogénés » contiennent des gaz de fission (xénons, iodes, césiums, ...) et des produits d'activation (cobalts, manganèse, tritium, carbone 14...) et de fission. Ces effluents sont essentiellement produits en phase d'exploitation du fait des mouvements d'eau primaire effectués lors des variations de puissance ou de l'ajustement des paramètres chimiques de l'eau du réacteur...).
- Les effluents issus des circuits auxiliaires dits « effluents usés » constituent le reste des effluents. Ils résultent principalement des opérations de maintenance nécessitant des vidanges de circuit (filtres, déminéraliseurs, échangeurs...), des opérations d'évacuation du combustible usé et de conditionnement des résines usées, des actions de maintien de la propreté des installations (lavage du sol et du linge).

La totalité de ces effluents est collectée, puis traitée, pour retenir l'essentiel de la radioactivité.

Les effluents issus du circuit primaire sont dirigés vers le circuit de Traitement des Effluents Primaires (TEP). Celui-ci comprend une chaîne de filtration et de déminéralisation, un dégazeur permettant d'envoyer les gaz dissous vers le système de Traitement des Effluents Gazeux (TEG), et une chaîne d'évaporation permettant de séparer l'effluent traité en un distillat (eau) d'activité volumique faible pouvant être recyclé ou rejeté le cas échéant, et en un concentrat renfermant le bore, qui est généralement recyclé vers le circuit primaire.

Les effluents liquides oxygénés recueillis dans les puisards des différents locaux sont dirigés vers le circuit de Traitement des Effluents Usés (TEU) où ils sont traités. Collectés sélectivement suivant plusieurs catégories (résiduaires, chimiques, planchers, servitudes), le traitement de ces effluents, approprié à leurs caractéristiques physico-chimiques, peut se faire:

- par filtration et déminéralisation (résines échangeuses d'ions) permettant de retenir l'essentiel de la radioactivité.
- sur chaîne d'évaporation, permettant d'obtenir d'une part un distillat épuré chimiquement et d'activité faible, et d'autre part un concentrat composé principalement d'acide borique.
- par filtration pour les drains de planchers et servitudes (laverie, douches...) peu radioactifs.

Les effluents sont ensuite acheminés vers des réservoirs d'entreposage dénommés réglementairement T ou S, où ils sont analysés, sur le plan radioactif et sur le plan chimique, avant d'être rejetés, en respectant la réglementation.

Les eaux issues des salles des machines (groupe turbo-alternateur) ne sont pas des effluents radioactifs (article 2.3.3 de la décision n°2017-DC-0588). Ces eaux sont collectées sans traitement préalable vers des réservoirs dénommés réglementairement Ex où elles sont contrôlées avant d'être rejetées.

Pour les autres installations nucléaires (déconstruction notamment), des effluents liquides radioactifs peuvent être générés par les procédés mis en œuvre. Ces effluents sont

récoltés, stockés, traités et contrôlés avant rejet. Les rejets sont surveillés en continu et réalisés en concertation avec les autres rejets pour l'ensemble du CNPE.

a. Règles spécifiques de comptabilisation

Ces règles s'appuient en premier lieu sur la définition de « spectres de référence », en fonction du type de rejet (liquides ou atmosphériques). Ces rejets sont constitués d'une liste de radionucléides à identifier par les moyens de mesure adéquats. Cette liste a été déterminée par une étude réalisée de 1996 à 1999 sur l'ensemble du parc des CNPE d'EDF. Toutes les substances figurant dans plus de 90 % des analyses figurent dans cette liste. Des radionucléides comme l'iode, peu présent dans les rejets, figurent également dans cette liste, mais pour des raisons historiques.

La deuxième règle fondamentale consiste à déclarer obligatoirement une activité rejetée pour les radionucléides appartenant à ces différents « spectres de référence ». Les radionucléides dont l'activité mesurée est inférieure au seuil de décision¹ donnent lieu à une comptabilisation d'activité rejetée égale au SD.

Les cumuls mensuels sont établis par sommation des activités rejetées pour chacune des catégories d'effluents du mois considéré (T, S, Ex). Les cumuls annuels sont égaux à la somme des cumuls mensuels.

b. Spectre de référence des rejets d'effluents radioactifs liquides

Le bilan des rejets d'effluents radioactifs liquides est déterminé pour chacune des quatre familles de radionucléides réparties comme suit :

- le Tritium,
- le Carbone 14,
- les lodes,
- les autres produits de fission ou d'activation émetteurs bêta et/ou gamma (PF-PA).

Le tableau ci-dessous est un rappel du spectre de référence des rejets radioactifs liquides pour les tranches en fonctionnement.

¹ D'après le Bilan de l'état radiologique de l'environnement français de l'IRSN : « Le seuil de décision est la valeur minimale que doit avoir la mesure d'un échantillon pour que le métrologiste puisse « décider » que cette activité est présente et donc mesurée. En dessous de cette valeur, l'activité de l'échantillon est donc trop faible pour être estimée. Ce seuil de décision dépend de la performance et du rayonnement ambiant autour des moyens métrologiques utilisés. »

Paramètres	Radionucléide
Tritium	³ H
Carbone 14	¹⁴ C
lodes	131
	⁵⁴ Mn
	⁶³ Ni
	⁵⁸ Co
	⁶⁰ Co
Produits de fission et	^{110m} Ag
d'activation	^{123m} Te
	¹²⁴ Sb
	¹²⁵ Sb
	¹³⁴ Cs
	¹³⁷ Cs

Pour les autres installations (l'unité de déconstruction Bugey 1 et l'ICEDA), le tableau ci-dessous est un rappel du spectre de référence.

Installation	Paramètres	Radionucléide			
	Tritium	³ H			
		⁵⁸ Co			
Bugey 1	Produits de fission et	¹³⁷ Cs			
	d'activation	⁶³ Ni			
		⁵⁵ Fe			
ICEDA	Pas de rejets liquides				

c. Cumul mensuel

Le cumul mensuel des rejets d'effluents radioactifs liquides pour les tranches en fonctionnement est donné dans le tableau suivant pour les iodes et les produits de fission et d'activation :

	131	⁵⁴ Mn	⁶³ Ni	⁵⁸ Co	⁶⁰ Co	110mAg	^{123m} Te	¹²⁴ Sb	¹²⁵ Sb	¹³⁴ Cs	¹³⁷ Cs	⁵¹ Cr	⁹⁹ Mo	^{99m} Tc	^{108m} Ag
	(GBq)	(GBq)													
Janvier	2,80.10 ⁻³	2,94.10 ⁻³	2,51.10 ⁻²	2,94.10 ⁻²	3,27.10 ⁻²	1,89.10 ⁻¹	2,14.10 ⁻³	5,59.10 ⁻³	1,05.10 ⁻²	2,85.10 ⁻³	4,45.10 ⁻³	3,97.10 ⁻³	2,80.10-4	2,80.10-4	0
Février	1,66.10 ⁻³	1,69.10 ⁻³	9,67.10 ⁻³	1,01.10-2	1,24.10 ⁻²	5,35.10-2	7,87.10 ⁻³	1,78.10 ⁻³	4,91.10 ⁻³	1,73.10 ⁻³	2,19.10 ⁻³	0	4,50.10-4	4,50.10-4	0
Mars	6,34.10-4	5,99.10-4	7,61.10 ⁻³	1,43.10-2	7,22.10 ⁻³	3,81.10-2	4,87.10-4	7,37.10-4	1,90.10 ⁻³	6,68.10-4	7,84.10-4	0	0	0	0
Avril	6,75.10-4	7,10.10-4	6,08.10 ⁻³	1,35.10 ⁻²	8,15.10 ⁻³	4,10.10-2	5,24.10-4	7,20.10-4	2,14.10 ⁻³	7,02.10-4	9,23.10-4	0	0	0	0
Mai	1,65.10 ⁻³	1,60.10 ⁻³	6,62.10 ⁻³	9,65.10 ⁻³	9,30.10 ⁻³	5,52.10 ⁻²	1,66.10 ⁻³	2,02.10 ⁻³	5,51.10 ⁻³	1,74.10 ⁻³	1,93.10 ⁻³	0	1,40.10-4	1,40.10-4	0
Juin	1,23.10 ⁻³	1,31.10 ⁻³	6,39.10 ⁻³	8,23.10 ⁻³	1,50.10 ⁻²	3,45.10-2	9,27.10-4	2,72.10 ⁻³	4,19.10 ⁻³	1,27.10 ⁻³	1,43.10 ⁻³	0	2,46.10-4	2,46.10-4	0
Juillet	1,48.10 ⁻³	1,49.10 ⁻³	1,55.10 ⁻³	2,88.10-2	2,41.10-2	9,78.10-2	1,29.10 ⁻³	1,78.10 ⁻³	4,43.10 ⁻³	1,54.10 ⁻³	1,76.10 ⁻³	0	0	0	2,58.10-4
Août	1,68.10 ⁻³	2,01.10 ⁻³	6,77.10 ⁻³	1,82.10-2	3,30.10-2	7,45.10-2	1,31.10 ⁻³	1,82.10 ⁻³	5,79.10 ⁻³	1,77.10 ⁻³	2,02.10 ⁻³	0	1,15.10-4	1,15.10 ⁻⁴	0
Septembre	1,12.10 ⁻³	1,39.10 ⁻³	7,96.10 ⁻³	8,02.10 ⁻³	2,03.10-2	4,48.10-2	8,81.10-4	1,92.10 ⁻³	3,91.10 ⁻³	1,18.10 ⁻³	1,76.10 ⁻³	0	0	0	0
Octobre	7,54.10 ⁻⁴	7,47.10-4	6,98.10 ⁻³	8,96.10 ⁻³	1,53.10 ⁻²	4,09.10-2	1,36.10 ⁻³	1,31.10 ⁻³	4,26.10 ⁻³	7,85.10-4	9,16.10-4	0	0	0	0
Novembre	1,15.10 ⁻³	1,15.10 ⁻³	1,07.10-2	5,26.10 ⁻³	1,34.10 ⁻²	4,25.10-2	2,02.10 ⁻³	1,24.10 ⁻³	3,60.10 ⁻³	1,22.10 ⁻³	1,55.10 ⁻³	0	0	0	0
Décembre	1,09.10 ⁻³	1,17.10 ⁻³	2,25.10-2	9,71.10 ⁻³	3,03.10-2	1,08.10-1	8,72.10-4	2,59.10 ⁻³	3,37.10 ⁻³	1,12.10 ⁻³	1,29.10 ⁻³	0	0	0	0
TOTAL ANNUEL	1,59.10 ⁻²	1,68.10-2	1,32.10-1	1,64.10-1	2,21.10 ⁻¹	8,20.10-1	2,13.10-2	2,42.10-2	5,45.10-2	1,66.10-2	2,10.10-2	3,97.10 ⁻³	1,23.10 ⁻³	1,23.10 ⁻³	2,58.10-4

	Volumes rejetés (m³)	Activité Tritium (GBq)	Activité Carbone 14 (GBq)	Activités lodes (GBq)	Activités Autres PF et PA (GBq)
Janvier	4,06.10 ⁴	6,28.10 ³	3,19	2,80.10 ⁻³	3,10.10 ⁻¹
Février	3,10.10 ⁴	3,42.10 ³	1,50	1,66.10 ⁻³	1,07.10 ⁻¹
Mars	2,17.10 ⁴	2,54.10 ³	6,46.10 ⁻¹	6,34.10-4	7,24.10 ⁻²
Avril	2,57.10 ⁴	3,76.10 ³	1,48	6,75.10-4	7,44.10 ⁻²
Mai	2,97.10 ⁴	3,15.10 ³	2,05	1,65.10 ⁻³	9,55.10 ⁻²
Juin	2,23.10 ⁴	1,46.10 ³	7,01.10 ⁻¹	1,23.10 ⁻³	7,64.10-2
Juillet	3,22.104	1,79.10 ³	7,77.10 ⁻¹	1,48.10 ⁻³	1,79.10 ⁻¹
Août	2,65.10 ⁴	1,96.10 ³	4,91.10 ⁻¹	1,68.10 ⁻³	1,47.10 ⁻¹
Septembre	2,32.10 ⁴	2,08.10 ³	5,34.10 ⁻¹	1,12.10 ⁻³	9,21.10 ⁻²
Octobre	2,52.10 ⁴	4,18.10 ³	2,01	7,54.10-4	8,15.10 ⁻²
Novembre	2,87.104	3,17.10 ³	2,10	1,15.10 ⁻³	8,26.10-2
Décembre	2,61.10 ⁴	1,48.10 ³	6,98.10 ⁻¹	1,09.10 ⁻³	1,81.10 ⁻¹
TOTAL ANNUEL	3,33.105	3,53.10 ⁴	1,62.10 ¹	1,59.10 ⁻²	1,50

Il a été vérifié que les rejets ne présentent pas d'activité volumique alpha globale d'origine artificielle supérieure aux seuils de décision.

Il n'y a eu aucun rejet d'effluents radioactifs liquides en 2020 pour l'unité en déconstruction Bugey 1 ainsi que pour l'ICEDA.

d. Comparaison pluriannuelle et au prévisionnel

Le tableau ci-dessous permet un comparatif des valeurs de rejet de l'année 2020 avec les valeurs des années précédentes et celles du prévisionnel 2020 pour les tranches en fonctionnement.

	Rejets par catégorie de radionucléides (GBq)								
	Tritium	Carbone 14	lodes	Autres PA et PF					
2018	4,97.10 ⁴	1,53.10 ¹	1,8.10 ⁻²	1,41					
2019	5,68.10 ⁴	1,64.10 ¹	1,56.10 ⁻²	1,44					
2020	3,53.10 ⁴	1,62.10 ¹	1,59.10 ⁻²	1,50					
Prévisionnel 2020	60 000	25	0,02	1,60					

<u>Commentaires</u>: Les rejets radioactifs liquides sont cohérents avec les valeurs du prévisionnel 2020.

e. Comparaison aux limites

Le tableau ci-dessous permet un comparatif des valeurs de rejets de l'année 2020 avec les valeurs limites de rejets fixées par la décision ASN n°2014-DC-0443 pour les tranches en fonctionnement.

	Limites annuelles of	Rejet	
Paramètres	Prescriptions	Valeur	Valeur maximale (GBq)
Tritium	Activité annuelle rejetée (GBq)	90 000	3,53.10 ⁴
Carbone 14	Activité annuelle rejetée (GBq)	260	1,62.10 ¹
lodes	Activité annuelle rejetée (GBq)	0,4	1,59.10 ⁻²
Autres PA et PF	Activité annuelle rejetée (GBq)	36	1,50

Commentaires : Les limites réglementaires de rejets ont été respectées.

f. Surveillance des eaux de surface

Des prélèvements d'eau du Rhône sont réalisés lors de chaque rejet d'effluents liquides radioactifs (à mi-rejet). Des prélèvements journaliers sont également réalisés en dehors des périodes de rejet. Plusieurs analyses sont réalisées sur ces échantillons d'eau filtrée (mesure de l'activité alpha globale, bêta globale, du tritium et de la teneur en potassium sur l'eau et mesures de l'activité bêta globale sur les matières en suspension). Ces analyses permettent de s'assurer du respect des valeurs d'activité volumique limites fixées par la réglementation.

Les résultats des mesures réalisées sur les eaux de surface pour l'année 2020 sont donnés dans le tableau suivant (valeurs moyennes et maximales).

		Activité volumique horaire à mi- rejet			Activité volumique : moyenne journalière			
	Paramètre analysé	Valeur moyenne mesurée en 2020	Valeur maximale mesurée en 2020	Limite	Valeur moyenne mesurée en 2020	Valeur maximale mesurée en 2020	Limite	
	Activité bêta globale	1,22.10 ⁻¹ Bq/L	2,60.10 ⁻¹ Bq/L	2 Bq/L	-	-	-	
Eau filtrée	Tritium	4,28.10 ¹ Bq/L	2,16.10 ² Bq/L	280 Bq/L	1,26.10 ¹ Bq/L	1,89.10 ¹ Bq/L	140 ⁽¹⁾ / 100 ⁽²⁾ Bq/L	
	Potassium	1,72 mg/L	3,10 mg/L	-	-	-	-	

	Paramètre analysé	Activité volumique horaire à mi- rejet			Activité volumique : moyenne journalière		
		Valeur moyenne mesurée en 2020	Valeur maximale mesurée en 2020	Limite	Valeur moyenne mesurée en 2020	Valeur maximale mesurée en 2020	Limite
Matières en suspension	Activité bêta globale	2,13.10 ⁻² Bq/L	1,27.10 ⁻¹ Bq/L	2 Bq/L	-	-	-

⁽¹⁾ en présence de rejets radioactifs / (2) en l'absence de rejets radioactifs

<u>Commentaires</u>: Les mesures de surveillance dans les eaux de surface pour l'année 2020 sont cohérentes avec les valeurs attendues du fait des rejets d'effluents autorisés du CNPE. Les mesures d'activité bêta globale et de l'activité en tritium dans l'eau sont inférieures aux limites réglementaires.

2. Rejets d'effluents liquides chimiques

Le fonctionnement d'un CNPE nécessite l'utilisation de substances chimiques et donne lieu à des rejets chimiques par voie liquide dans l'environnement.

Ces rejets d'effluents chimiques sont issus :

- des produits de conditionnement des circuits primaire, secondaire et auxiliaires utilisés pour garantir l'intégrité des matériels contre la corrosion (rejets chimiques associés aux effluents radioactifs ou non): ils sont rejetés via le canal de rejet 2/3 sur le site du Bugey,
- de la production d'eau déminéralisée, également rejetés via le canal 2/3,
- du traitement des eaux vannes (eaux rejetées par les installations domestiques),
- des traitements des circuits du refroidissement à l'eau brute contre les dépôts de tartre et le développement des micro-organismes, rejetés via le canal 4/5 du site du Bugey.

Les principales substances utilisées sont :

- l'acide borique (H₃BO₃) : le bore contenu dans cet acide est « avide » des neutrons produits lors de la réaction nucléaire. C'est une substance neutrophage, qui permet donc le contrôle de la réaction de fission et donc le pilotage du réacteur. Ce bore est dissous dans l'eau du circuit primaire.
- la lithine (LiOH) : ce produit est utilisé pour maintenir le pH du circuit primaire. En effet, le bore est sous forme acide. Pour éviter les effets de corrosion liés à cet acide, de la lithine est ajoutée à l'eau du circuit primaire afin d'ajuster le pH à celui de moindre corrosion. La concentration en lithine est donc directement liée à celle du bore.
- l'hydrazine (N₂H₄): ce produit est utilisé principalement dans le circuit secondaire comme un agent anti-oxydant. Il permet d'éliminer l'oxygène dissous dans le mélange eau-vapeur, et ainsi maintenir là aussi un pH de moindre corrosion du circuit secondaire.

- La morpholine (C₄H₃NO), l'éthanolamine (C₂H₁NO) et l'ammoniaque (NH₄OH) sont des amines volatiles qui peuvent être employées, seules ou en combinaison, pour maintenir le bon pH dans le circuit secondaire. Elles complètent l'action de l'hydrazine. Le mode de conditionnement du circuit secondaire a évolué avec les années pour tenir compte du retour d'expérience interne et étranger. L'éthanolamine (C₂H₁NO), utilisée sur quelques CNPE, constitue une alternative intéressante à la morpholine, en particulier pour la protection des pièces internes des générateurs de vapeur et des purges des sécheurs-surchauffeurs de la turbine. Son utilisation sera déployée à partir de 2022 sur Bugey.
- le phosphate trisodique (Na₃PO₄) : comme l'hydrazine, le phosphate est utilisé pour le conditionnement des circuits de refroidissement intermédiaires.
- les détergents : ces produits sont régulièrement utilisés pour le nettoyage des locaux industriels ; qu'ils soient en ou hors zone contrôlée. Ils sont également utilisés à la laverie du CNPE pour le nettoyage des tenues d'intervention.

Les autres rejets chimiques réglementés ont pour origine l'installation de production d'eau déminéralisée, le traitement des eaux vannes et usées, dans la station d'épuration, ainsi que le traitement des eaux potentiellement huileuses issues de la salle des machines, des transformateurs principaux. Les rejets des eaux pluviales sont également réglementés au niveau des émissaires de rejet.

Les circuits fermés de refroidissement des condenseurs véhiculent de l'eau chaude dans laquelle peuvent se développer des salissures et des micro-organismes. Pour limiter leurs développements, un traitement contre le tartre et un traitement biocide sont mis en œuvre dans les circuits fermés de refroidissement des condenseurs du CNPE de Bugey.

L'injection d'anti-tartre organique agit sur le processus de germination du tartre par un ralentissement de la vitesse de croissance des cristaux et permet de limiter également l'adhésion du tartre et des matières en suspension sur les parois des principaux composants des circuits de par son effet filmant et dispersant.

Il existe également des rejets chimiques résultant du traitement contre la prolifération des amibes *Naegleria fowleri* et des légionelles *Legionella pneumophila* qui sont :

- des composés liés à la fabrication de la monochloramine sur CNPE, tels que le sodium, les chlorures et l'ammonium issus respectivement de l'hypochlorite de sodium (NaOCI) et de l'ammoniaque (NH₄OH),
- des composés issus de la réaction du chlore de la monochloramine avec les matières organiques présentes dans l'eau circulant dans les circuits de refroidissement, tels que les AOX (dérivés organo-halogénés),
- des nitrites et nitrates liés à la décomposition de la monochloramine et à l'oxydation de l'azote réduit (ammonium).

Le résiduel en chlore total à maintenir en sortie de condenseur (paramètre de pilotage) est à l'origine du flux de Chlore Résiduel Total (CRT).

Les autres installations nucléaires du site (l'unité en déconstruction Bugey 1 notamment) ne contribuent aux rejets d'effluents chimiques du site que pour une très faible part des rejets de métaux totaux issus de la corrosion des circuits.

a. Etat des connaissances sur la toxicité de la morpholine / de l'éthanolamine et de leurs produits dérivés

Une évolution des connaissances sur la toxicité de la morpholine a été identifiée en 2019. De même, une substance formée à partir de la réaction de nitrosation d'un sous-produit de la morpholine a été identifiée récemment. Ces évolutions sont présentées ci-après.

Les principaux effets connus sont également rappelés ci-après.

- La morpholine a des propriétés irritantes (respiratoire, oculaire et cutané) et corrosives. Une Valeur Toxicologique de Référence (VTR) chronique par voie orale de 0,12 mg/kg/j a été établie par l'ANSES en 2019. Une mise à jour de l'évaluation de risque sanitaire suite à la prise en compte de cette VTR pour la morpholine a été réalisée. Elle conclut à une absence de risque sanitaire pour les populations riveraines et à des concentrations ajoutées faibles dans l'environnement.
- Les produits de dégradation de la morpholine sont constitués de composés carbonés : ions acétates, formiates, glycolates et oxalates, ainsi que de composés azotés : diéthanolamine, éthanolamine, méthylamine, pyrrolidine, diéthylamine, éthylamine, N-nitrosomorpholine. Il s'agit de substances qui sont faiblement toxiques dans les conditions de rejet. Aucune VTR issue des bases de données de référence n'est associée à ces substances à l'exception de la N-nitrosomorpholine.
- De plus, la morpholine peut notamment être transformée in vivo en N-nitrosomorpholine en présence de nitrites. Une VTR chronique par voie orale pour la N-nitrosomorpholine de 4 (mg/kg/j)⁻¹ a été établie par l'ANSES en 2012.
- De même, la pyrrolidine peut être transformée in vivo en N-nitrosopyrrolidine. Il s'agit d'une substance formée à partir de la réaction de nitrosation d'un sous-produit de la morpholine, la pyrrolidine. Une VTR chronique par voie orale pour la N-nitrosopyrrolidine de 2,1 (mg/kg/j)-1 a été établie par l'US EPA en 1987. Une mise à jour de l'évaluation de risque sanitaire suite à la prise en compte de cette substance a été réalisée. Elle conclut à une absence de risque sanitaire pour les populations riveraines et à des concentrations ajoutées faibles dans l'environnement.

L'étude d'impact n'a pas mis en évidence de risque sanitaire attribuable aux rejets liquides de morpholine et de ses produits dérivés.

b. Règles spécifiques de comptabilisation

En application de l'article 3.2.7. -l. de la décision ASN n° 2013-DC-0360 modifiée, une nouvelle règle est appliquée à compter du 1er janvier 2015 pour la comptabilisation des quantités de substances chimiques rejetées. Cette nouvelle règle consiste à retenir par convention une valeur de concentration égale à la limite de quantification divisée par deux lorsque le résultat de la mesure est en dessous de la limite de quantification des moyens métrologiques employés pour effectuer l'analyse.

c. Rejets d'effluents liquides chimiques via le canal de rejet 2/3

i. Cumul mensuel

Le cumul mensuel des rejets chimiques transitant par le canal de rejet 2/3 est donné dans le tableau suivant :

	Acide borique (kg)	Morpholine (kg)	Hydrazine (kg)	Lithine (kg)	Détergents (kg)	Azote (kg)	Phosphates (kg)	Sodium (kg)	Chlorures (kg)	Métaux totaux (kg)	Sulfates (kg)	MES (kg)	DCO (kg)
Janvier	3,41.10 ³	7,12.10 ¹	1,47.10 ⁻¹	7,10.10 ⁻¹	3,45	3,11.10 ²	6,89.10 ¹	5,60.10 ³	6,60.10 ²	7,40	1,50.104		3,90.10 ²
Février	1,72.10 ³	4,00.10 ¹	8,56.10 ⁻²	5,40.10 ⁻¹	4,58	2,57.10 ²	5,39.10 ¹	4,40.10 ³	5,30.10 ²	6,40	1,20.10 ⁴	2,51	1,20.10 ²
Mars	3,74.10 ²	2,46.10 ¹	6,34.10-2	3,80.10-1	2,93	1,35.10 ²	6,11.10 ¹	2,50.10 ³	3,10.10 ²	2,80	6,50.10 ³	-	7,60.10 ¹
Avril	7,90.10 ¹	1,91.10 ¹	8,93.10-2	4,50.10 ⁻¹	2,65	1,67.10 ²	4,06.10 ¹	4,60.10 ³	5,60.10 ²	2,80	1,20.104		1,60.10 ²
Mai	3,68.10 ²	4,07.10 ¹	2,10.10-1	5,20.10 ⁻¹	4,68	2,53.10 ²	5,78.10 ¹	9,40.103	1,20.10 ³	5,80	2,40.104	2,51	2,00.102
Juin	8,49.10 ¹	4,30.10 ¹	8,05.10-2	3,90.10 ⁻¹	4,11	2,88.10 ²	5,48.10 ¹	5,60.10 ³	5,70.10 ²	4,80	1,30.104	=	7,60.10 ¹
Juillet	8,45.10 ²	7,28.10 ¹	1,59.10 ⁻¹	5,60.10 ⁻¹	3,52	2,79.10 ²	3,02.10 ¹	5,90.10 ³	6,40.10 ²	4,20	1,50.104		8,10.10 ¹
Août	4,82.10 ²	7,02.10 ¹	1,09.10 ⁻¹	4,70.10-1	2,71	2,46.10 ²	3,55.10 ¹	6,70.10 ³	6,40.10 ²	5,60	1,60.104	8,67	2,70.10 ²
Septembre	7,20.10 ²	5,35.10 ¹	6,25.10-2	4,10.10-1	2,27	2,39.10 ²	4,89.10 ¹	5,10.10 ³	4,50.10 ²	5,60	1,20.104	-	2,70.102
Octobre	1,40.10 ³	6,94.10 ¹	2,64.10-1	4,40.10-1	2,75	2,70.10 ²	6,35.10 ¹	3,60.10 ³	4,30.10 ²	6,50	9,60.10 ³		3,20.10 ²
Novembre	6,14.10 ²	5,10.10 ¹	1,52.10 ⁻¹	5,00.10-1	3,41	1,83.10 ²	7,69.10 ¹	3,70.10 ³	4,20.10 ²	5,10	9,40.10 ³	7,80	4,90.10 ²
Décembre	4,73.10 ²	3,32.10 ¹	1,42.10 ⁻¹	4,60.10 ⁻¹	3,17	1,28.10 ²	4,11.10 ¹	4,60.10 ³	5,00.10 ²	4,40	1,10.10 ⁴	=	8,50.10 ¹
TOTAL ANNUEL	1,06.10 ⁴	5,89.10 ²	1,56	5,83	4,02.10 ¹	2,76.10 ³	6,33.10 ²	6,17.10 ⁴	6,91.10 ³	6,14.10 ¹	1,56.10 ⁵	2,15.10 ¹	2,54.10 ³

ii. Comparaison pluriannuelle et au prévisionnel

Le tableau ci-dessous permet un comparatif des valeurs de rejets d'effluents non radioactifs liquides de l'année 2020 avec les valeurs des années précédentes et celles du prévisionnel 2020 pour les tranches en fonctionnement.

Substances	Unité	2018	2019	2020	Prévisionnel 2020
Acide borique	kg	6,49.10 ³	1,09.10 ⁴	1,06.10 ⁴	11 000
Morpholine	kg	6,58.10 ²	8,91.10 ²	5,89.10 ²	900
Hydrazine	kg	2,9	1,8	1,56	2,4
Lithine	kg	1,8.10 ¹	7,81	5,83	(1)
Détergents	kg	3,7.10 ¹	3,54.10 ¹	4,02.10 ¹	50
Azote	kg	$3,53.10^3$	4,25.10 ³	2,76.10 ³	6 500
Phosphates	kg	7,81.10 ²	$7,56.10^2$	6,33.10 ²	800
Sodium	kg	7,03.10 ⁴	6,75.10 ⁴	6,17.10 ⁴	80 000
Chlorures	kg	7,78.10 ³	7,42.10 ³	6,91.10 ³	8 000
Métaux totaux	kg	6,0.10 ¹	7,16.10 ¹	6,14.10 ¹	(1)
Sulfates	kg	1,75.10 ⁵	1,69.10 ⁵	1,56.10 ⁵	200 000
MES	kg	1,32.10 ¹	1,71.10 ¹	2,15.10 ¹	(1)
DCO	kg	1,13.10 ³	1,95.10 ³	2,54.10 ³	(1)

Commentaires: RAS. (1) Pas de prévisionnel pour ces paramètres.

iii. Comparaison aux limites

Le tableau ci-dessous permet un comparatif des valeurs de rejets de l'année 2020 avec les valeurs limites de rejets fixées par les décisions ASN n°2014-DC-0442 et n°2014-DC-0443 pour les tranches en fonctionnement.

	Limite	Rejet	Limite	Rejet	Limite	Rejet	Limite	Rejet
Substances	Concentration maximale ajoutée (mg/L)	Valeur maximale calculée (mg/L)	Flux 24h (kg)	Valeur maximale calculée (kg)	Flux 2h (kg)	Valeur maximale calculée (kg)	Flux annuel ajouté (kg)	Flux annuel calculé (kg)
Acide borique	3	4,4.10-1	2 100	1,40.10 ³	500	2,80.10 ²	23 000	1,06.10 ⁴
Morpholine	0,28	1,3.10 ⁻²	27	10	(1)	-	2 090	5,89.10 ²
Hydrazine	0,006	5,9.10 ⁻⁵	2,2	4,9.10-2	(1)	-	32	1,56
Détergents	0,36	4,5.10-4	135	6,5.10 ⁻¹	60	8.10 ⁻²	8 000	4,02.10 ¹
Azote	0,3	7,42.10-2	120	3,7.10 ¹	(1)	-	8 900	2,76.10 ³
Phosphates	0,24	3,1.10-2	100	5,2.10 ¹	40	2,6.10 ¹	1 550	6,33.10 ²
Sodium	1,8	9,18.10-1	820	4,68.10 ²	(1)	-	(1)	6,17.10 ⁴
Chlorures	0,11	1,06.10-1	150	6,3.10 ¹	(1)	-	(1)	6,91.10 ³
Métaux totaux	0,006	4,95.10-4	2,4	1,16	(1)	-	55	6,14.10 ¹ *
Sulfates	8,9	2,33	3 000	1,42.10 ³	(1)	-	(1)	1,56.10 ⁵
MES	0,25	7,4.10 ⁻³	120	6,5	(1)	-	(1)	2,15.10 ¹
DCO	0,79	4,16.10 ⁻²	450	8,27.10 ¹	(1)	-	(1)	2,54.10 ³

⁽¹⁾ Pas de limite réglementaire pour ces paramètres.

L'article 5.3.1 de la décision ASN n°2017-DC-0588 demande une évaluation de la quantité annuelle de lithine rejetée. En 2020, la quantité de lithine rejetée par le CNPE du Bugey est évaluée à 5,83 kg.

<u>Commentaires</u>: *Le dépassement du flux annuel de métaux totaux en 2020 a été déclaré via une montée d'indice de l'ESE déclaré chaque année pour le dépassement du flux annuel, dont les causes sont identiques depuis 2015, année de la mise en application des décisions rejets en vigueur sur le site (sous dimensionnement de la limite). Un dossier de demande de modification de cette limite est en cours d'instruction.

d. Rejets d'effluents liquides chimiques via le canal 4/5

Ce paragraphe présente les rejets de substances chimiques liées au traitement contre le tartre et au traitement biocide du CNPE du Bugey pour l'année 2020.

i. Cumul mensuel

Le tableau ci-dessous présente les rejets mensuels pour chaque type de substances chimiques par voie liquide.

	Chlorures (kg)	Sodium (kg)	AOX (kg)	THM (kg)	CRT (kg)	Ammonium (kg)	Nitrites (kg)	Nitrates (kg)	Chlore libre (kg)	Sulfates (kg)	DCO (kg)	Antitartre organique (kg)
Janvier		2,56.10 ³									3,12.10 ⁴	2,92.104
Février	(1)	2,90.10 ³	(1)		(1)	(1)	(1)	(1)			2,76.10 ⁴	2,54.10 ⁴
Mars		1,67.10 ³									1,59.10 ⁴	1,46.104
Avril	2,64.10 ³	3,41.10 ³	0		1,66.10 ¹	2,16	0	2,41.10 ³			1,61.10 ⁴	1,57.104
Mai	5,40.10 ³	7,29.10 ³	9,94		4,37.102	3,39.10 ²	2,66.10 ²	4,56.10 ³			3,62.10 ⁴	3,29.104
Juin	7,98.10 ³	8,51.10 ³	0		8,65.10 ¹	1,09.10 ²	0	7,32.10 ³			3,19.10 ⁴	2,92.104
Juillet	1,34.10 ⁴	1,22.104	8,35.10 ¹	(2)	2,01.10 ²	1,06.10 ²	0	1,22.10 ⁴	(2)	(2)	3,30.104	3,04.104
Août	1,77.10 ⁴	1,50.104	0	(2)	4,35.10 ²	2,25.10 ²	0	1,62.10 ⁴	(2)	(3)	3,30.104	3,04.104
Septembre	9,46.10 ³	9,48.10 ³	0		2,84.10 ²	8,51.10 ¹	0	8,64.10 ³			3,18.10 ⁴	2,93.104
Octobre	1,35.10 ³	3,88.10 ³	0		3,07.10 ¹	1,11.10 ¹	0	1,24.10 ³			2,85.10 ⁴	2,63.104
Novembre	(1)	2,60.10 ³	(1)		(1)	(1)	(1)	(1)			2,47.10 ⁴	2,27.104
Décembre	(1)	2,28.10 ³	(1)		(1)	(1)	(1)	(1)			2,17.104	2,00.104
TOTAL ANNUEL	5,80.10 ⁴	7,17.104	9,34.10 ¹		1,49.10 ³	8,76.10 ²	2,66.10 ²	5,26.104			3,32.105	3,06.105

- (1) Pas de traitement biocide sur ces mois
- (2) Pas de chloration massive sur l'année
- (3) Pas de chloration massive ni de traitement antitartre à l'acide sur l'année

ii. Comparaison pluriannuelle et au prévisionnel

Les limites réglementaires relatives aux rejets des substances chimiques liées au traitement biocide sont réglementées par la décision ASN n°2014-DC-0443.

Le tableau ci-dessous permet un comparatif des valeurs de rejets d'effluents liquides chimiques de l'année 2020 avec les valeurs des années précédentes et celles du prévisionnel 2020.

Paramètres	Unité	2018	2019	2020	Prévisionnel 2020			
Chlorures		$3,19.10^4$	4,54.10 ⁴	5,80.10 ⁴	65 000			
Sodium		4,40.10 ⁴	5,37.10 ⁴	7,17.10 ⁴	75 000			
AOX		2,23.10 ²	4,98.10 ²	9,34.10 ¹	700			
THM		Pas	de traitemer	nt par chlorati	on massive			
CRT		1,60.10 ²	6,5.10 ¹	1,49.10 ³	1 500			
Ammonium		6,43.10 ²	8,86.10 ²	8,76.10 ²	1 000			
Nitrites		2,85.10 ²	2,8.10 ¹	2,66.10 ²	800			
Nitrates		2,88.10 ⁴	4,16.10 ⁴	5,26.10 ⁴	55 000			
Chlore libre (si	kg							
chloration		Pas de traitement par chloration massive						
massive)								
Sulfates (si		Pas de trait	ement nar ch	loration mass	sive ni de traitement			
chloration			•	acide sur ces				
massive)			andiante and	acide sui ces	annees			
DCO		3,55.10 ⁵	3,54.10 ⁵	3,32.10 ⁵	(1)			
Antitartre		3,55.10 ⁵	3,54.10 ⁵	3,06.10 ⁵	450 000			
organique		5,55.10	5,5 4 .10	3,00.10	+30 000			

⁽¹⁾ Pas de prévisionnel établi pour cette substance

<u>Commentaires</u>: L'estimation du prévisionnel de rejets des AOX est toujours difficile à établir du fait de l'instabilité de ces composés, qui varient en fonction de la qualité d'eau et de la température. Les valeurs déclarées en 2020 pour les rejets de CRT sont plus élevées du fait d'une nouvelle méthodologie de calcul.

iii. Comparaison aux limites et au prévisionnel

Le tableau ci-dessous présente les rejets annuels relatifs au traitement biocide à la monochloramine pour chaque type de substance chimique.

	Limite	Re	jet	Limite	Rejet	Limite	Rejet
Paramètres	Concentration maximale ajoutée au rejet (mg/L)	Valeur maximale (mg/L)	Valeur moyenne (mg/L)	Flux 24h ajouté (kg)	Valeur maximale (kg)	Flux annuel ajouté (kg)	Flux annuel (kg)
Chlorures	1,7	1,14	7,87.10 ⁻¹	1 490	1,16.10 ³	180 000	5,80.104
Sodium	1,7	8,50.10 ⁻¹	5,15.10 ⁻¹	1 480	8,62.10 ²	380 000	7,17.104
AOX	0,05	1,15.10 ⁻²	7,00.10 ⁻³	40	1,19.10 ¹	1 500	9,34.10 ¹
THM	0,2	(1)	(1)	10	(1)	(3)	(1)
CRT	0,14	4,95.10 ⁻²	3,40.10-2	120	4,96.10 ¹	13 000	1,49.10 ³
Ammonium				100	4,41.10 ¹	(3)	8,76.10 ²
Nitrites	0,36*	2,35.10 ⁻¹	1,40.10 ⁻¹	100	6,11.10 ¹	(3)	2,66.10 ²
Nitrates				1 370	3,97.10 ²	(3)	5,26.10 ⁴
Chlore libre (si chloration massive)	0,1	(1)	(1)	(3)	(1)	(3)	(1)
Sulfates (si chloration massive ou traitement acide)	29	(2)	(2)	25 000	(2)	520 000	(2)
DCO	4,5	2,23	1,84	3 900	1,93.10 ³	(3)	3,32.105
Antitartre organique	3,5	2,06	1,70	3 000	1,78.10 ³	(3)	3,06.105

- (1) Pas de chloration massive sur l'année 2020
- (2) Pas de chloration massive ni de traitement antitartre à l'acide sur l'année 2020
- (3) Pas de limite réglementaire pour ces paramètres

Commentaires : *Valeur mesurée en azote total.

e. Rejets d'effluents liquides chimiques dans le réseau d'eaux pluviales (SEO)

iv. Rejets chimiques liquides pour les ouvrages Wi : comparaison aux limites

Les réseaux d'égouts (W) situés à proximité des matériels utilisant des hydrocarbures sont équipés de dispositifs de traitement appropriés tels que des déshuileurs.

Des contrôles sont réalisés périodiquement à la sortie du système de traitement afin de s'assurer que la concentration en hydrocarbures ne soit pas supérieure aux limites réglementaires fixées dans la décision n°2014-DC-0443 de l'ASN du 15 juillet 2014.

Des mesures trimestrielles en hydrocarbures et de pH sont réalisées sur l'ensemble des W_i.

Paramètre	Unité	Période	W1	W2	W3	W4	W5	W6	W7	Limites de rejet
		Trimestre 1	0,2	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	0,4	5 mg/L (pour W1/W4/W5/
Hydrocarbures	mg/L	Trimestre 2	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	W7)
Trydrocarbures	ilig/L	Trimestre 3	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	10 mg/L (pour
		Trimestre 4	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	W2/W3/W6)
		Trimestre 1	8,1	7,8	8	8,3	8,3	7,5	8,2	
pH	_	Trimestre 2	7,3	7,9	8,2	8	7,1	7,5	7,6	(1)
		Trimestre 3	8,3	8,1	8,3	8,2	7,9	8,1	8,2	
		Trimestre 4	7,9	8,1	8,3	8	8	8,3	8	

⁽¹⁾ Pas de limite pour ce paramètre

Commentaires: RAS.

Certains W_i font l'objet, chaque semestre, de mesures sur les paramètres suivants :

Paramètre	Unité	Période	W1	W2	W3	W4	W5	W6	W7
DCO	mg/L	Semestre 1	< 5	< 5		< 5		< 5	
		Semestre 2	< 5	< 5		< 5		< 5	
MES	mg/L	Semestre 1	19	10	(1)	53	(1)	18	(1)
		Semestre 2	130	7	, ,	16		50	, ,
DBO ₅	mg/L	Semestre 1	< 3	< 3		< 3		< 3	
		Semestre 2	< 3	< 3		< 3		< 3	

⁽¹⁾ Pas de mesure réalisée sur ces Wi

Commentaires: RAS

v. Rejets chimiques liquides pour les décanteurs déshuileurs

Sur les parties de l'installation où de l'huile est entreposée ou utilisée, des systèmes de traitement ont également été mis en place. Ils font l'objet de contrôles trimestriels pour s'assurer du respect de la limite fixée dans la décision n°2014-DC-0442 de l'ASN du 15 juillet 2014.

Paramètre	Lieu de prélèvement	Trimestre 1	Trimestre 2	Trimestre 3	Trimestre 4	Limite
	Parking nord 1	< 0,1	< 0,1	< 0,1	< 0,1	
	Parking sud 1	< 0,1	< 0,1	0,5	< 0,1	
	Parking sud 2	< 0,1	< 0,1	< 0,1	< 0,1	
	Parking sud 3	< 0,1	< 0,1	1,0	< 0,1	
	Parking sud 4	< 0,1	< 0,1	0,1	< 0,1	
	Parking direction	< 0,1	< 0,1	0,1	0,1	
	Station-service 1	0,4	0,3	< 0,1	< 0,1	
	Station-service 2	1,7	0,5	< 0,1	0,7	
	Garage (1)	6,7	8,8	< 0,1	1,9	
	Huilerie	< 0,1	< 0,1	0,2	0,8	
	Bâche à fuel	0,8	0,1	< 0,1	0,2	
Hydrocarbures	LTP/LTS TR2/3	< 0,1	< 0,1	< 0,1	0,1	10 mg/L
	LTP/LTS TR4/5	0,4	0,1	< 0,1	0,2	
	LTA TR2/3	0,4	< 0,1	< 0,1	< 0,1	
	LTA TR4/5	< 0,1	< 0,1	< 0,1	< 0,1	
	LGX Bugey 1	0,1	0,1	0,6	< 0,1	
	FARN 1	< 0,1	< 0,1	0,9	0,2	
	FARN 2	< 0,1	< 0,1	1,5	0,5	
	Aire de dépotage	0,7	0,6	< 0,1	0,4	
	Magasin relais	0,4	0,5	< 0,1	< 0,1	
	ICEDA (7 SEO 7063 DH)			1,4	0,3	
	ICEDA (7 SEO 7005 DH)	(2)	(2)	0,2	< 0,1	
	ICEDA (7 SEO 7042 DH)			0,5	0,3	

⁽¹⁾ Le prélèvement est réalisé directement dans la fosse. Cette installation est un débourbeur.

Commentaires : RAS.

⁽²⁾ Pas de mesures réalisées sur l'ICEDA avant sa mise en service en septembre 2020.

Le système de traitement de la station de transit des déchets conventionnels fait l'objet d'un suivi particulier. Ce suivi répond à une prescription fixée par la décision n°2014-DC-0442 de l'ASN du 15 juillet 2014.

Lieu de prélèvement	Unité	Rejet effectif – Valeur maximale enregistrée en 2020
Station de transit	Hydrocarbures	1,5 mg/L
des déchets conventionnels	DCO	129 mg/L
	рН	7,8

Commentaires: RAS.

f. Rejets d'effluents liquides chimiques en sortie de station d'épuration

Les eaux usées d'origine domestique (sanitaires, eaux vannes) sont collectées par un réseau particulier puis dirigées vers une station d'épuration (STEP) avant rejet. Cinq stations sont présentes sur le site du Bugey.

Les paramètres suivants sont contrôlés, notamment pour le contrôle du respect des limites fixées par la décision n°2014-DC-0443 de l'ASN du 15 juillet 2014.

Paramètres	Concentration sortie d'insta		Valeur maximale Flux 24h ajouté (kg)			
	Limite de rejet	Rejet effectif	Limite de rejet	Rejet effectif		
DCO	300	89	20	2,62		
DBO ₅	100	9	10	0,36		
MES	100	28	15	1,44		
Phosphore total	(1)	-	0,5	0,36		
Azote global	(1)	-	2	1,7		

(1) Pas de limite pour ces paramètres

Commentaires: RAS.

Paramètres	Cumul annuel (kg)	Limite flux annuel (kg)	Prévisionnel 2020 (kg)
Phosphore total	383	(1)	600
Azote global	1 938	(1)	3 500

⁽¹⁾ Pas de limite pour ces paramètres

Commentaires: RAS.

3. Principales opérations de maintenance intervenues sur les équipements et ouvrages de rejets liquides

L'année 2020 n'a pas été concernée par des actions de maintenance (hors maintenance programmée) et aucune intervention ou opération de maintenance anticipée n'ont été nécessaires.

4. Opérations exceptionnelles de rejets d'effluents liquides

Le CNPE du Bugey n'a pas réalisé d'opération exceptionnelle de rejet d'effluents liquides chimiques en 2020.

III. Rejets thermiques

Dans un CNPE, le fluide « eau-vapeur » du circuit secondaire suit un cycle thermodynamique au cours duquel il échange de l'énergie thermique avec deux sources de chaleur, l'une chaude, l'autre froide.

Le circuit assurant le refroidissement du condenseur (circuit tertiaire) constitue la source froide dont la température varie entre 0 °C et 30 °C environ. La source froide, nécessaire au fonctionnement, peut être apportée :

- soit directement par l'eau prélevée en rivière (ou en mer) dans un circuit dit ouvert,
- soit indirectement par l'air ambiant au moyen d'un aéroréfrigérant dans un circuit dit fermé.

En circuit ouvert, l'échauffement de l'eau (écart de température entre la sortie et l'entrée, $\Delta T^{\circ}C$) est lié à la puissance thermique (Pth) à évacuer au condenseur et au débit d'eau brute au condenseur (Q).

Afin de réduire le volume d'eau prélevée et limiter l'échauffement du milieu aquatique, le refroidissement peut se faire en circuit fermé au moyen d'aéroréfrigérants. Dans un aéroréfrigérant, une grande part de la chaleur extraite du condenseur est transférée directement à l'atmosphère sous forme de chaleur latente de vaporisation (75 %) et sous forme de chaleur sensible (25 %). Le reste de la chaleur est rejeté au cours d'eau par la purge. La purge de l'aéroréfrigérant constitue donc le rejet thermique de l'installation.

Les contrôles destinés à s'assurer du respect des limites réglementaires s'appuient sur des calculs effectués à partir de paramètres physiques tels que le rendement thermodynamique, l'énergie électrique produite, les débits de rejet et du cours d'eau, pour estimer l'écart de température à ajouter à la température mesurée à l'amont.

1. En conditions climatiques normales

Les rejets thermiques issus du circuit de refroidissement du CNPE du Bugey et des différents circuits secondaires nécessaires à son fonctionnement doivent respecter les limites fixées dans la décision ASN n°2014-DC-0443.

Le CNPE du Bugey réalise en continu des mesures de températures en amont, au rejet et en aval du CNPE et un suivi des rejets thermiques conformément aux autorisations de rejet en vigueur. Le bilan des valeurs mensuelles de ces différents paramètres pour l'année 2020 sont présentés dans les tableaux suivants :

	Température moyenne		Echauffement	Température moyenne		oyenne	
	journalière mesurée à		moyen	journalière calculée à		ulée à	
	Pa	amont (°0	C)	journalier (°C)	l'aval (°C)		
	Max	Min	Moy	Max	Max	Min	Моу
Janvier	7,04	5,21	6,28	5,30	12,09	6,29	8,27
Février	8,19	6,00	7,31	1,53	9,33	6,60	8,17
Mars	10,91	7,32	8,76	2,20	12,14	7,85	9,66
Avril	15,54	9,29	13,11	2,84	18,10	10,96	14,80
Mai	18,12	10,74	14,72	0,88	18,32	11,42	14,99
Juin	21,91	11,76	17,40	0,45	22,09	11,94	17,60
Juillet	23,87	18,12	21,39	0,44	24,03	18,28	21,58
Août	24,40	19,31	22,88	0,26	24,52	19,47	23,03
Septembre	21,67	12,56	19,42	0,45	22,03	12,88	19,68
Octobre	13,30	10,47	11,97	0,57	13,45	10,77	12,22
Novembre	12,04	7,22	10,48	0,80	12,61	7,48	10,86
Décembre	8,69	5,98	7,60	0,28	8,83	6,14	7,77

2. Comparaison aux limites

Les rejets thermiques doivent respecter les limites fixées à l'article EDF-BUG-161 de la décision ASN n°2014-DC-0443.

Paramètres	Unité	Limite en vigueur	Valeurs maximales
Température moyenne journalière aval calculée	°C	Du 1er mai au 15 septembre : 26°C	24,52
,		Du 16 septembre au 30 avril : 24°C	22,03
Echauffement moyen journalier	°C	Du 1 ^{er} mai au 15 septembre : 5°C	0,88
,		Du 16 septembre au 30 avril : 7°C	5,30

<u>Commentaires</u>: Les limites réglementaires associées aux rejets thermiques ont toujours été respectées.

3. Suivi de tendance des débits du Rhône et des rejets thermiques

Le graphique ci-après est présenté en réponse à la prescription [EDF-BUG-143] de la décision n°2014-DC-0442, il représente le débit moyen du Rhône sur la période estivale 2020 (en bleu foncé) ainsi que les températures moyennes observées chaque jour dans le Rhône à l'amont du CNPE (en bleu clair). La courbe rouge représente la température moyenne journalière calculée à l'aval, sur laquelle porte la limite de 26°C (24°C à partir du 16/09).

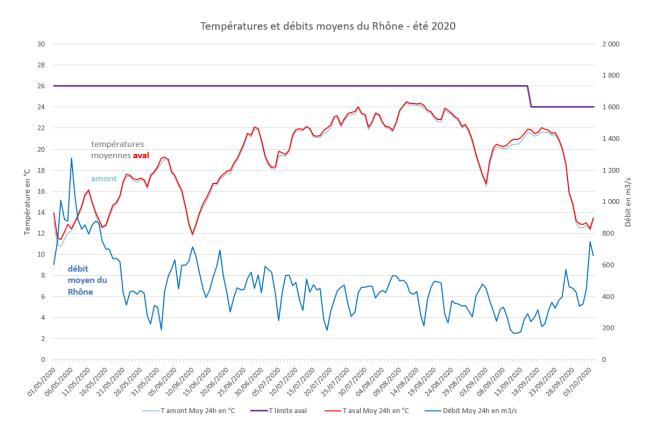


Figure 2 : Températures et débits moyens du Rhône - été 2020 (Source : EDF)

En 2020, les réacteurs 2 et 3, refroidis en circuits ouverts, n'ayant pas fonctionné durant la période estivale, l'échauffement du milieu récepteur est très faible (maximum 0,88°C début mai) car il est uniquement dû aux réacteurs refroidis en circuits semi-fermés. C'est pourquoi on distingue à peine la courbe de la température amont (en bleu clair) par rapport à la courbe de la température aval (en rouge).

4. En conditions climatiques exceptionnelles

Aucun épisode caniculaire nécessitant l'utilisation des limites en conditions climatiques exceptionnelles n'a eu lieu en 2020.

5. Principales opérations de maintenance intervenues sur les équipements et ouvrages de rejets thermiques

L'année 2020 n'a pas été concernée par des actions de maintenance (hors maintenance programmée) et aucune intervention ou opération de maintenance anticipée n'ont été nécessaires.

Partie V - Prévention du risque microbiologique

Le CNPE du Bugey peut être confronté au risque de prolifération de micro-organismes pathogènes pour l'homme, comme les amibes ou les légionelles, qui sont naturellement présents dans les cours d'eau en amont des installations et transitent par les circuits de refroidissement.

Ces micro-organismes trouvent en effet un terrain de développement favorable dans l'eau des circuits de refroidissement dits semi-fermés des CNPE. Ces circuits de refroidissement, équipés de tours aéroréfrigérantes, sont soumis depuis le 1^{er} avril 2017 à une réglementation commune, la décision ASN n° 2016-DC-0578 relative à la prévention des risques résultant de la dispersion de micro-organismes pathogènes, qui fixe des seuils à partir desquels des actions doivent être menées afin de rétablir les concentrations à des niveaux inférieurs.

Afin de limiter ces proliférations, le CNPE du Bugey applique un traitement biocide à l'eau des circuits de refroidissement depuis l'année 2002. Dans l'objectif de limiter l'impact sur l'environnement de ce traitement par injection de monochloramine, le CNPE du Bugey développe depuis plusieurs années une méthodologie de traitement séquentiel au lieu d'une injection continue. Cette méthode permet de maîtriser le risque microbiologique tout en diminuant de façon notable les quantités de produits chimiques rejetés.

Les résultats microbiologiques indiqués sont issus de l'exigence 5.4.1 de la décision ASN n°2016-DC-0578 dite « Amibes-Légionelles ». Pour corréler les résultats microbiologiques et le traitement biocide associés mis en place sur les CNPE, les exigences des décisions individuelles des CNPE liées à la surveillance et aux résultats de mesures du traitement biocide sont présentées également ci-dessous.

I. Bilan annuel des colonisations en circuit

Les valeurs maximales observées en 2020 en *Legionella pneumophila* mesurées en bassin et en *Naegleria fowleri* calculées en aval dans le fleuve sont présentées dans le tableau ci-dessous.

Les résultats des analyses de suivi de la concentration en *Legionella pneumophila* et en *Naegleria fowleri* calculés en aval dans le fleuve sont détaillés en annexe 1.

Paramètre	Valeur maximale observée en 2020	Seuil d'action
Legionella pneumophila	700 UFC/L mesuré en bassin	10 000 UFC / L
Naegleria fowleri	22 N.fowleri/L calculé dans le Rhône	100 N.fowleri / L

Pendant toute la durée du suivi microbiologique, la concentration en *Naegleria fowleri* calculée dans le Rhône après dilution du rejet n'a jamais atteint la valeur limite de 100 *Nf/L*, et la concentration en *Legionella pneumophila* n'a jamais atteint le seuil d'action de 10 000 UFC/L.

II. Synthèse des traitements biocides et rejets associés

Les données concernant les rejets associés aux traitements biocides se trouvent dans la Partie IV- Rejets d'effluents.

La stratégie de traitement préventif estival, communiquée en début d'année, consistait en un traitement continu, suivi d'un traitement séquentiel. Le traitement séquentiel consiste en une injection durant 4 à 7 heures par jour. Le traitement est démarré et arrêté sur des critères basés sur les niveaux de colonisations en amibes *Naegleria fowleri* et en légionelles *Legionella pneumophila*.

Données d'ensemble de la campagne de traitement 2020 :

	Unités de production				
Paramètres	File 4.1	File 4.2	File 5.1	File 5.2	
Date de démarrage et d'arrêt de la période de vaccination	(1)	21/04/2020 au 29/04/2020	08/05/2020 au 19/05/2020	07/05/2020 au 19/05/2020	
Date de démarrage et d'arrêt du traitement préventif	24/04/2020 au 01/10/2020	28/06/2020 au 02/10/2020	10/06/2020 au 29/09/2020	24/06/2020 au 07/10/2020	
Date d'arrêt de Tranche (début et fin)	24/10/2020 au 31/12/2020	24/10/2020 au 31/12/2020	22/02/2020 au 02/05/2020	22/02/2020 au 02/05/2020	
Nombre de jour de traitement continu	(1)	9	10	11	
Nombre de jour de traitement séquentiel	160	96	112	106	
Date de mise en œuvre du traitement renforcé Nombre de jours de	Pas de chlo	oration massive ni	traitement renf	orcé en 2020	
Chloration massive CRT moyen sortie condenseur (mg/L)	0,23	0,24	0,24	0,24	
Consommation réelle d'eau de Javel (m3)	390				
Consommation réelle d'ammoniaque (m3)		6	7		

(1) Sur la file 4.1, du fait de l'impossibilité de traiter de manière continue afin de pouvoir surveiller la canalisation d'injection en heures ouvrables, le traitement préventif a été démarré en injection séquentielle dès le 24/04/2020.

Les approvisionnements en réactifs se sont déroulés comme prévu et n'ont pas posé de difficulté particulière.

Partie VI - Surveillance de l'environnement

I. Surveillance de la radioactivité dans l'environnement

EDF met en place depuis la mise en service de chaque CNPE un programme de surveillance de la radioactivité dans l'environnement du CNPE. Cette surveillance consiste à prélever des échantillons, à des fins d'analyse, dans les écosystèmes proches du CNPE, sous et hors des vents dominants, en amont et en aval des rejets liquides et dans les eaux souterraines. Ces mesures, associées à un contrôle strict des rejets d'effluents radiologiques, permettent de s'assurer de l'absence d'impact sur l'homme et l'environnement comme démontré dans l'étude d'impact.

La surveillance radiologique de l'environnement remplit trois fonctions principales.

Une fonction d'alerte assurée au moyen de mesures en continu. Elle permet la détection précoce de toute évolution atypique d'un ou plusieurs paramètres environnementaux en lien avec l'exploitation des installations afin de déclencher les investigations et, si nécessaire, des actions de prévention (arrêt du rejet...);

Une fonction de contrôle du bon fonctionnement global des installations au travers des paramètres que la réglementation demande de suivre à différentes fréquences. Les résultats des analyses sont comparés, soit aux limites autorisées, soit à des valeurs repères (seuil de détection des appareils de mesure, bruit de fond naturel...);

Une fonction de suivi et d'étude visant à s'assurer de l'absence d'impact à long terme des prélèvements et des rejets sur les écosystèmes terrestre et aquatique. C'est l'objet des campagnes de mesures saisonnières de radioécologie.

Les prélèvements et analyses sont réalisés à des fréquences variables en cohérence avec les objectifs assignés à la mesure (alerte, contrôle,...). Des contrôles quotidiens, hebdomadaires et mensuels sont ainsi réalisés dans l'écosystème terrestre, l'air ambiant, les eaux de surface recevant les rejets liquides et les eaux souterraines. Les prélèvements et les analyses sont réalisés par le CNPE selon les modalités fixées par les autorisations délivrées par l'administration. La stricte application du programme de surveillance fait l'objet d'inspections programmés ou inopinés de la part de l'ASN, qui réalise des expertises indépendantes.

Le CNPE dispose pour la réalisation de ce programme de surveillance d'un laboratoire dédié aux mesures environnementales dit laboratoire « Environnement », ainsi que du personnel compétent et qualifié en analyses chimiques et radiochimiques. Ces laboratoires sont équipés d'appareillages spécifiques permettant l'analyse des échantillons prélevés dans le milieu naturel. Ils sont soumis à des exigences relatives aux équipements, aux techniques de prélèvement et de mesure, de maintenance et d'étalonnage. Certaines analyses peuvent être sous-traitées à des laboratoires agréés.

Ainsi, le CNPE réalise annuellement, sous le contrôle de l'ASN, plusieurs milliers d'analyses (plus de 25 000 en 2020) dont les résultats sont transmis à l'administration et et dont le bilan est publié par EDF sur le site internet du CNPE (EDF Bugey https://www.edf.fr/centrale-nucleaire-bugey).

Les résultats des mesures de radioactivité réalisées dans le cadre de la surveillance réglementaire de l'environnement sont également accessibles en ligne gratuitement sur le site

internet du Réseau National de Mesures de la radioactivité de l'environnement (RNM - http://www.mesure-radioactivite.fr).

Ces mesures réalisées en routine sont complétées depuis 1992 par un suivi radioécologique annuel des écosystèmes terrestre et aquatique auquel est venu s'ajouter des mesures réglementaires réalisées à maille trimestrielle et annuelle et nécessitant le recours à des techniques analytiques d'expertise non compatibles avec les activités d'un laboratoire environnement d'un industriel. Tous les 10 ans, un bilan radioécologique décennal plus poussé est également réalisé. L'ensemble de ces prélèvements et analyses permettent de suivre à travers une grande variété d'analyses des paramètres environnementaux pertinents (i.e. : bio indicateurs) afin d'évaluer finement et dans la durée l'impact du fonctionnement du CNPE sur l'environnement et répondre ainsi à la fonction de suivi et d'étude. Ces études nécessitent des connaissances scientifiques approfondies de la biologie et des comportements des écosystèmes vis-à-vis des substances radioactives. Elles font aussi appel à des techniques de prélèvement d'échantillons et d'analyse complexes différentes de celles utilisées pour la surveillance de routine. Ces études sont donc confiées à des laboratoires externes qualifiés, agréés et reconnus pour leurs compétences spécifiques.

Ces études radioécologiques assurent un suivi long terme essentiel à la compréhension des mécanismes de transfert des radionucléides dans l'environnement et pour déterminer l'influence potentielle des rejets de l'installation au regard des autres sources de radioactivité naturelle et/ou artificielle.

La nature des échantillons et les lieux de prélèvement sont sélectionnés afin de mettre en évidence une éventuelle contribution des rejets d'effluents liquides et/ou atmosphériques des installations à l'ajout de radioactivité dans l'environnement.

En règle générale, le plan d'échantillonnage contient des échantillons biologiques, qui constituent des voies de transfert possibles, directes ou indirectes, de la radioactivité vers l'homme (prélèvements de légumes, fruits, poissons, lait, eaux, herbes...) et des échantillons, appelés bioindicateurs, qui sont connus pour leur aptitude à fixer spécifiquement certains polluants (lichens, mousses, bryophytes...). Le plan d'échantillonnage prévoit également des prélèvements dans des matrices dites « d'accumulation » (sols, sédiments), dans lesquels certains composants radiologiques peuvent rester piégés.

Les stations de prélèvements sont choisies en fonction de la rose des vents locale, des conditions hydrologiques, de la répartition de la population et de la disponibilité des échantillons dans l'environnement du CNPE. Les prélèvements collectés dans l'environnement terrestre sont répartis en distinguant les zones potentiellement influencées des zones non influencées par les rejets atmosphériques du CNPE. Dans l'environnement aquatique, les prélèvements sont effectués en amont et en aval des points de rejets des effluents liquides en tenant compte de la présence éventuelle d'une autre installation nucléaire en amont.

Ces études radioécologiques ont permis de caractériser finement les niveaux de radioactivité d'origine naturelle et artificielle dans les différents compartiments de l'environnement autour du CNPE, et de préciser l'influence des rejets d'effluents liquides et à l'atmosphère. Les données collectées depuis plusieurs décennies ont montré que la radioactivité naturelle constitue la principale composante de la radioactivité dans l'environnement, et que la radioactivité artificielle provient majoritairement d'une rémanence des retombées des essais nucléaires atmosphériques et de l'accident de Tchernobyl. Du fait de l'éloignement de ces événements anciens et des efforts réalisés par EDF pour diminuer les rejets de ses installations nucléaires, le niveau de radioactivité dans l'environnement à proximité du CNPE a considérablement diminué depuis une vingtaine d'année.

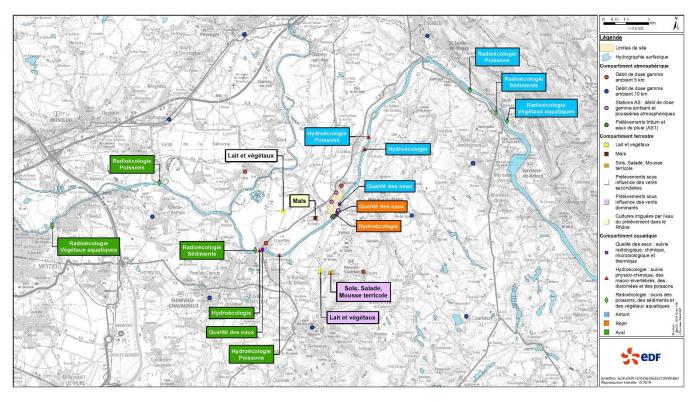


Figure 3 : Surveillance de la radioactivité dans l'environnement autour du CNPE du Bugey (Source : EDF)

1. Surveillance de la radioactivité ambiante

Le système de surveillance de la radioactivité ambiante s'articule autour de 4 réseaux de balises radiamétriques (clôture, à 1 km, à 5 km et à 10 km) via la mesure en continu du débit de dose gamma ambiant. Les balises de chaque réseau sont implantées à intervalle régulier de façon à réaliser des mesures dans toutes les directions. Elles permettent l'enregistrement et la retransmission en continu du débit de dose gamma ambiant et de donner l'alerte en cas de dépassement du bruit de fond ambiant augmenté de 114 nSv/h. Les balises sont également équipées d'un système d'alarme signalant toute interruption de leur fonctionnement.

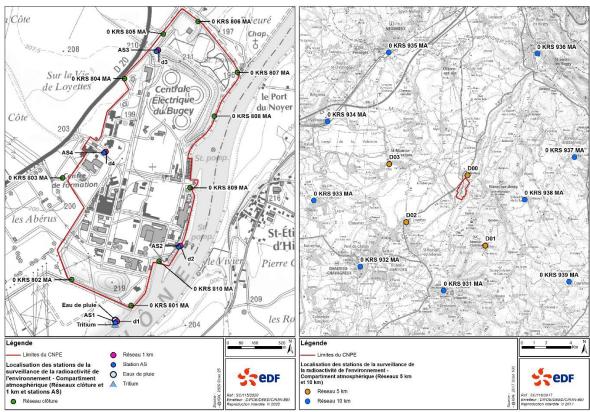


Figure 4 : Localisation des stations de la surveillance de la radioactivité de l'environnement – Compartiment atmosphérique (Source : EDF)

Les informations (débits de dose et états de fonctionnement) issues des balises sont envoyées en continu vers un centralisateur qui permet la visualisation et l'enregistrement des données. Les débits de dose moyens enregistrés par les différents réseaux de mesure pour l'année 2020 sont présentés dans le tableau suivant. Les débits de dose maximaux et les données relatives à l'année antérieure sont également présentés à titre de comparaison.

Réseau de mesure	Débit de dose moyen année 2020 (nSv/h)	Débit de dose max année 2020 (nSv/h)	Débit de dose moyen année 2019 (nSv/h)	Débit de dose moyen année 2018 (nSv/h)
Clôture	8,43.10 ¹	8,72.10 ¹	1,00.10 ²	8,9.10 ¹
1 km	8,46.10 ¹	9,72.10 ¹	9,5.10 ¹	8,8.10 ¹
5 km	8,78.10 ¹	1,03.10 ²	1,03.10 ²	8,6.10 ¹
10 km	9,25.10 ¹	9,67.10 ¹	1,04.10 ²	9,3.10 ¹

<u>Commentaires</u>: Pour les quatre réseaux, les débits de dose moyens enregistrés pour l'année 2020 sont de l'ordre de grandeur du bruit de fond et cohérents avec les résultats des années antérieures (Dans le rapport de l'année 2019 une erreur d'unité a été observée : les données affichées en nSv/h correspondaient en réalité à des μSv/h).

2. Surveillance du compartiment atmosphérique

Quatre stations d'aspiration en continu des poussières atmosphériques (aérosols) sont implantées dans un rayon de 1 km autour du CNPE. Des analyses journalières de l'activité alpha globale et bêta globale à J+6 sont réalisées quotidiennement sur les filtres, ainsi qu'une

analyse isotopique mensuelle par spectrométrie gamma sur regroupement des filtres quotidiens par station.

Un dispositif de prélèvement du tritium atmosphérique par barbotage est également implanté sous les vents dominants à la station dite AS1. L'analyse du tritium atmosphérique piégé est réalisée pour chacune des périodes définies réglementairement (du 1er au 7, du 8 au 14, du 15 au 21 et du 22 à la fin du mois).

Un dispositif de prélèvement des eaux de pluie par un collecteur de précipitations est implanté sous les vents dominants à la station AS1. Des analyses bimensuelles des activités alpha globale, bêta globale et tritium sont réalisées.

Les résultats des mesures réalisées sur le compartiment atmosphérique pour l'année 2020 sont donnés dans le tableau suivant.

Compartiment	Paramètres		Moyenne annuelle	Valeur maximale mesurée	Limite réglementaire
	Alpha globale (Bq/m³)		< 4,3.10 ⁻⁵	< 2,1.10 ⁻⁴	(1)
	Bêta globale (Bq/m³)		< 1,1.10 ⁻³	< 2,9.10 ⁻³	0,01
		⁵⁸ Co	< 1,12.10 ⁻⁵	< 2,4.10 ⁻⁵	
	/m³)	⁶⁰ Co	< 7,91.10 ⁻⁶	< 1,9.10 ⁻⁵	
Poussières	% Spectrométrie gamma (Bq/m³)	¹³⁴ Cs	< 7,61.10 ⁻⁶	< 1,1.10 ⁻⁵	
atmosphériques		¹³⁷ Cs	< 7,29.10 ⁻⁶	< 9,8.10 ⁻⁶	
		⁴⁰ K	< 1,93.10 ⁻⁴	< 3,2.10 ⁻⁴	(1)
		²⁴¹ Am	< 5,69.10 ⁻⁷	< 8,9.10 ⁻⁷	
		²⁴⁴ Cm	< 5,08.10 ⁻⁷	< 1,8.10 ⁻⁶	
		²³⁸ Pu	< 7,04.10 ⁻⁷	< 1,1.10 ⁻⁶	
		²³⁹ Pu	< 4,38.10 ⁻⁷	< 1,1.10 ⁻⁷	
Tritium atmos	ohérique	e (Bq/m³)	< 2,1.10 ⁻¹	< 1,4	50
	Alpha globale (Bq/L)		< 2,55.10 ⁻²	4,0.10 ⁻²	
Eau de pluie	Bêta globale (Bq/L)		< 1,55.10 ⁻¹	< 8,93.10 ⁻¹	(1)
	Triti	um (Bq/L)	< 4,35	< 5,02	

⁽¹⁾ Pas de limite réglementaire pour ces paramètres

<u>Commentaires</u>: Les mesures de surveillance du compartiment atmosphérique pour l'année 2020 sont cohérentes en moyenne avec les valeurs du bruit de fond. Les mesures de l'activité bêta globale et de l'activité en tritium atmosphérique sont très inférieures aux limites réglementaires.

3. Surveillance du milieu terrestre

Les résultats des mesures réalisées sur le compartiment terrestre pour l'année 2020 sont donnés dans le tableau suivant. Concernant les résultats des analyses par spectrométrie gamma, seules les activités relatives aux radionucléides d'origine artificielle et supérieures aux seuils de décision sont présentées.

Nature du prélèvement	Radionucléide		Périodicité	Moyenne annuelle	Valeur maximale mesurée
		⁵⁸ Co		3,51.10 ⁻¹	4,70.10 ⁻¹
Végétaux	Cnoatromátria	⁶⁰ Co		3,42.10 ⁻¹	4,60.10 ⁻¹
terrestres	Spectrométrie gamma	¹³⁴ Cs	Mensuelle	3,08.10 ⁻¹	4,00.10 ⁻¹
(Bq/kg sec)		¹³⁷ Cs		3,29.10 ⁻¹	4,10.10 ⁻¹
		⁴⁰ K		5,97.10 ²	1,31.10 ³
		⁵⁸ Co		3,73.10 ⁻¹	4,10.10 ⁻¹
Lait	Spectrométrie	⁶⁰ Co		3,89.10 ⁻¹	4,40.10 ⁻¹
(Bq/L)	gamma	¹³⁴ Cs	Mensuelle	1,90	3,70.10 ¹
		¹³⁷ Cs		3,72.10 ⁻¹	4,00.10 ⁻¹
		⁴⁰ K		1,07.10 ²	8,70.10 ²

<u>Commentaires</u>: Les résultats des mesures saisonnières réalisées sur le compartiment terrestre (dont les résultats sont longs à obtenir) ainsi que leur interprétation pour l'année 2019 sont présentés dans le rapport du suivi radioécologique annuel, présenté en annexe 2.

4. Surveillance du milieu aquatique

Les résultats des mesures saisonnières réalisées sur le compartiment aquatique ainsi que leur interprétation pour l'année 2019 sont présentés dans le rapport du suivi radioécologique annuel, présenté en annexe 2.

5. Surveillance des eaux souterraines

Les eaux souterraines situées au droit du CNPE font l'objet d'une surveillance radiologique dont les résultats sont présentés dans le tableau suivant.

Paramètres	Unité	Valeur maximale mesurée
Tritium	Bq/L	6,04.10 ¹
Bêta global	,	3,78.10 ⁻¹
⁴⁰ K	mg/L	5,30

Commentaires: RAS.

Suite à l'ESE déclaré en 2017, une surveillance complémentaire a été mise en place sur le CNPE du Bugey. Cette surveillance complémentaire concerne aujourd'hui 13 piézomètres surveillés à fréquence hebdomadaire ou mensuelle pour le tritium. Les résultats de cette surveillance complémentaire sont présentés dans le tableau suivant.

Paramètres Paramètres	Unité	Valeur maximale mesurée
Tritium	Bq/L	3,67.10 ²

<u>Commentaires</u>: L'élévation de la concentration en tritium sur ce piézomètre est due à une remobilisation d'une poche de marquage de l'ESE déclaré en 2017.

II. Physico-chimie des eaux souterraines

Une surveillance physico-chimique des eaux souterraines est effectuée sur les paramètres physicochimiques par le biais de prélèvements sur 31 piézomètres du CNPE.

Paramètres	Unité	Valeur maximale mesurée
pН	-	< 8,3
Conductivité	μS / cm	1,6.10 ^{3*}
Hydrocarbures		< 1,0.10 ⁻¹
DCO		< 2,0.10 ¹
Azote total	mg / L	< 1,1
Métaux totaux		< 4,5
Phosphates		< 2,8.10 ⁻¹
Nitrates		< 6,3.10 ¹

Paramètres	Unité	Valeur maximale mesurée
Chlorures		< 3,3.10 ¹
Sulfates	mg / L	< 2,2.10 ¹
Sodium		< 1,7.10 ¹

<u>Commentaires</u>: * Cette valeur élevée en conductivité s'explique par la conductivité observée à l'amont du site.

Lors de la campagne Etat Zéro des Sols réalisée dans le cadre du réexamen périodique (RCRi), des marquages au sol ont été détectés au niveau de trois zones sur l'ensemble du CNPE. Dans ce cadre une surveillance renforcée sur des piézomètres situés en aval et en amont de ces 3 zones a été mise en place par le CNPE du Bugey. Aucun marquage aux hydrocarbures des eaux souterraines n'a été identifié.

Cette surveillance complémentaire concerne 4 piézomètres surveillés à fréquence mensuelle pour les hydrocarbures. Les résultats de cette surveillance complémentaire sont présentés dans le tableau suivant.

Paramètres Paramètres	Unité	Valeur maximale mesurée
Hydrocarbures	mg/L	< 0,1

III. Chimie et physico-chimie des eaux de surface

1. Physico-chimie en continu

Les stations multi-paramètres (SMP), situées à « l'amont » et à « l'aval » du CNPE, mesurent en continu le pH, la conductivité, la température de l'eau et l'oxygène dissous dans le milieu récepteur.

Les tableaux suivants présentent les résultats du suivi sur l'année 2020 pour les stations à l'amont et à l'aval du site. Il s'agit des valeurs moyennes obtenues.

Station amont	Janv	Fév	Mar	Avr	Mai	Juin	Juil	Aou	Sep	Oct	Nov	Déc
Oxygène dissous (mg/L)	10,97	10,78	10,45	10,25	8,55	8,22	7,89	7,45	8,35	9,51	9,82	10,23
Conductivité (µS/cm)	372	352	350	328	310	301	287	288	289	318	338	349
рН	8,2	8,3	8,4	8,6	8,4	8,1	8,2	8,2	8,2	8,0	8,2	8,2
Température (°C)	6,27	7,31	8,76	13,13	14,74	17,41	21,41	22,85	19,36	11,96	10,43	7,61

Commentaires: RAS.

Station aval	Janv	Fév	Mar	Avr	Mai	Juin	Juil	Aou	Sep	Oct	Nov	Déc
Oxygène dissous (mg/L)	10,55	10,81	10,52	10,21	8,99	8,57	8,16	7,67	8,61	9,61	10,16	10,59
Conductivité (µS/cm)	345	335	331	300	300	308	296	288	283	317	341	352
pН	8,1	8,1	8,1	8,3	8,1	8,2	8,2	8,2	8,2	8,1	8,2	8,1
Température (°C)	12,23	10,79	12,20	18,50	16,26	18,38	22,28	23,46	20,29	13,02	11,49	8,34

Commentaires: RAS.

Il n'y a pas de différence significative des mesures moyennes mensuelles de pH, oxygène dissous et de conductivité entre les stations amont et aval du CNPE.

2. Physico-chimie des eaux de surface

Le CNPE fait réaliser par le laboratoire indépendant, en amont et en aval, des mesures de certains paramètres physico-chimiques soutenant la vie biologique. La fréquence des analyses est mensuelle, à l'exception des ions majeurs et de certains paramètres de minéralisation (Ca, Mg, K, TAC, TH), ainsi que de la chlorophylle, seulement analysés de manière trimestrielle. Les résultats de ces campagnes de mesures sont présentés dans le rapport de surveillance réalisé par ALAREP, disponible sur demande auprès du CNPE, dont la synthèse reprenant l'interprétation de ces résultats est présentée ci-après (IV.1).

3. Chimie des eaux de surface

Les rejets chimiques résultant du fonctionnement du CNPE sont issus :

- des produits de conditionnement des circuits :
- des traitements de l'eau des circuits contre le tartre, la corrosion ;
- de l'usure normale des matériaux
- du lavage du linge utilisé en zone contrôlée

Ces rejets font l'objet d'une surveillance des concentrations présentes dans le milieu récepteur. A cet effet, des mesures de substances chimiques sont effectuées trimestriellement dans le fleuve en amont et en aval du CNPE. Les tableaux suivants présentent les valeurs mesurées aux deux stations amont et aval sur l'année 2020.

Paramètres Station amont		Unité	Trimestre 1	Trimestre 2	Trimestre 3	Trimestre 4
Bore			< 1.10 ⁻¹	< 1.10 ⁻¹	< 1.10 ⁻¹	< 1.10 ⁻¹
Métaux	Fraction brute	1	9,60.10 ⁻²	5,68.10 ⁻²	1,30.10 ⁻¹	1,19.10 ⁻¹
totaux	Fraction dissoute	mg/L	1,17.10 ⁻²	2,50.10 ⁻²	2,43.10 ⁻²	2,23.10 ⁻²
	Hydrazine		< 5.10 ⁻³	< 5.10 ⁻³	< 5.10 ⁻³	< 5.10 ⁻³
Morpholine		1	< 5.10 ⁻²	< 5.10 ⁻²	< 5.10 ⁻²	< 5.10 ⁻²
	Détergents		< 2	< 2	< 2	< 2

Paramètres Station amont	Unité	Trimestre 1	Trimestre 2	Trimestre 3	Trimestre 4
Hydrocarbures		< 1.10 ⁻¹	< 1.10 ⁻¹	< 1.10 ⁻¹	< 1.10 ⁻¹
AOX	1	(1)	1,30.10 ¹	< 10	1,10.10 ¹
Acides chloroacétiques	mg/L	(1)	< 5	< 5	< 5
Chlore résiduel total	1	(1)	< 5.10 ⁻²	< 5.10 ⁻²	1,50.10 ⁻²
THM		(2)	(2)	(2)	(2)

Paramètres Station aval		Unité	Trimestre 1	Trimestre 2	Trimestre 3	Trimestre 4
	Bore		< 1.10 ⁻¹	< 1.10 ⁻¹	< 1.10 ⁻¹	< 1.10 ⁻¹
Métaux	Fraction brute	1	8,15.10 ⁻²	1,14.10 ⁻¹	1,27.10 ⁻¹	1,68.10 ⁻¹
totaux	aux Fraction dissoute		1,49.10 ⁻²	3,70.10 ⁻²	2,55.10 ⁻²	2,17.10 ⁻²
	Hydrazine		< 5.10 ⁻³	< 5.10 ⁻³	< 5.10 ⁻³	< 5.10 ⁻³
ı	Morpholine		< 5.10 ⁻²	< 5.10 ⁻²	< 5.10 ⁻²	< 5.10 ⁻²
	Détergents	mg/L	< 2	< 2	< 2	< 2
Ну	Hydrocarbures		< 1.10 ⁻¹	< 1.10 ⁻¹	< 1.10 ⁻¹	< 1.10 ⁻¹
	AOX		(1)	< 10	< 10	< 10
Acides chloroacetiques			(1)	< 5	< 5	< 5
Chlore résiduel total			(1)	1,50.10 ⁻²	5,00.10 ⁻²	< 5.10 ⁻²
	THM		(2)	(2)	(2)	(2)

- (1) Pas de traitement biocide sur le trimestre
- (2) Pas de chloration massive sur le trimestre

Commentaires: RAS.

IV. Physico-chimie et Hydrobiologie

Chaque année, le CNPE confie la réalisation de la surveillance physico-chimique et hydrobiologique à un organisme reconnu dans le domaine, ARALEP. Sont distinguées la surveillance pérenne, réalisée annuellement, des surveillances en conditions climatiques exceptionnelles (CCE), ne permettant pas de respecter les limites applicables aux rejets thermiques, alors que les réacteurs en circuit ouverts (unités de production n°2 et 3) sont déjà à l'arrêt et que RTE requiert le fonctionnement de la centrale à un niveau de puissance minimal (cf exigence [BUG-161-II] de la décision ASN n°2014-DC-0443).

L'objectif de la surveillance pérenne est de suivre l'évolution naturelle du milieu récepteur et de déceler une évolution anormale de l'écosystème, sur le long terme, qui pourrait être attribuable au fonctionnement du CNPE. Au contraire, les surveillances en conditions climatiques exceptionnelles et situations exceptionnelles ont plutôt pour objectif d'étudier la réponse à court terme de l'écosystème sous conditions de débits contraints et températures ambiantes élevées, le CNPE étant en fonctionnement.

1. Surveillance pérenne

La synthèse du rapport de surveillance, réalisée par ALAREP en collaboration avec INRAE (ex. IRSTEA) pour le suivi ichtyologique, est présentée ci-dessous.

RESUME

Commencé en 1978 le programme de surveillance physico-chimique et biologique du Rhône dans le secteur du Bugey a pour objectif de suivre l'évolution du milieu récepteur (l'hydrosystème Rhône) et de déceler une évolution anormale d'un ou de plusieurs compartiments qui proviendrait des activités du Centre Nucléaire de Production d'Electricité (CNPE) de Bugey (EDF).

Cette surveillance est basée sur :

- * la description des conditions environnementales générales (débit et température de l'eau) et de l'habitat des sites d'échantillonnage des communautés aquatiques ; analyse des écarts de température entre l'amont du CNPE et l'aval (sonde EDF de Loyettes) ;
- * des analyses de la qualité physico-chimique de l'eau (échantillonnages mensuels, voire trimestriels pour certains ions majeurs et paramètres de minéralisation ainsi que pour les pigments chlorophylliens 5 stations);
- * la surveillance de la communauté piscicole (4 campagnes 7 stations) ;
- * la surveillance des communautés d'invertébrés benthiques et de diatomées (4 campagnes 5 stations).

Les stations d'échantillonnage peuvent se regrouper en trois secteurs : Amont, Rejet et Aval du CNPE, dont l'emprise totale s'étend sur 13 km entre Saint-Vulbas (amont ile de la Fenière, Pk50.5; PK = Point Kilométrique, dont le zéro est la confluence Rhône-Saône) et Loyettes (aval pont, PK37.5).

Conditions environnementales

L'amont du CNPE de Bugey est un habitat assez courant avec une hétérogénéité des profondeurs. A l'aval du CNPE de Bugey les conditions d'habitat sont légèrement moins courantes qu'à l'amont mais avec une diversité de profondeur comparable. Les conditions d'habitat de la station Rejet sont plus lentes.

L'hydrologie du Rhône dans le secteur du Bugey en 2020 a été très variable avec un débit moyen (446 m³ s-1) plus faible que la moyenne inter-annuelle (473 m³ s-1) pour la deuxième année consécutive. L'étiage estival-automnal n'a cependant pas été aussi marqué que d'habitude (débit journalier rarement inférieur à 200 m³ s-1).

Le régime thermique était caractérisé par une température très fréquemment supérieure à la moyenne interannuelle et une température moyenne sur l'année (13.5 °C) supérieure à la moyenne inter-annuelle (12.3 °C) pour la septième année consécutive. L'année 2020 est une année avec une température de l'eau du Rhône à Bugey plutôt chaude avec un débit moyen à faible mais variable, y compris pendant la période de reproduction des poissons (avril - juin).

A noter qu'en 2020 les réacteurs R2 et R3 n'ont pas fonctionné de mai à la fin de l'année réduisant drastiquement la quantité d'eau échauffée rejetée par le CNPE. Ainsi l'échauffement global mesuré à l'aval du CNPE ne dépassait pas les 2°C sur cette période.

Physico-chimie

Le constat 2020 reste « classique » : en dehors du phénomène thermique, récurrent d'une année sur l'autre, mais nettement amoindri cette année avec l'arrêt des réacteurs 2 et 3 à partir de mai (delta T moyen de nos 12 mesures voisin de 3°C en aval immédiat du canal de rejet et de 1°C à Loyettes RD), l'ensemble des autres paramètres montre peu de discriminations entre les stations. Le fonctionnement et la qualité physico-chimique de l'eau n'apparaissent pas altérés par cet échauffement. Les écarts existants sont le plus souvent dus à des conditions précises, tel que le rejet de la STEP de Saint-Vulbas en amont RD (chlorures et sodium notamment cette année), ou, plus ponctuellement, celui de celle de St-Romain-de-Jalionas en aval RG (ammonium).

Concernant le paramètre température, exceptées les deux stations concernées directement par les arrêts de tranches, les valeurs moyennes 2020 sont supérieures aux observations par rapport à diverses moyennes de la chronique de suivi, cet écart allant en diminuant lorsqu'on réduit la chronique de comparaison et se rapproche des dernières années. Ainsi, à la station amont non

influencée, l'écart décroit de +1,3°C par rapport à l'ensemble de la chronique de suivi depuis 1980, à +0,7°C par rapport à la période 2000-2020 et à +0,25°C par rapport à la dernière décennie. Ceci est parfaitement en accord avec les observations d'évolution climatique montrant que les années les plus chaudes se situent toutes dans la dernière décennie, voire moins.

Les valeurs unitaires les plus élevées restent essentiellement liées à l'hydrologie via les phénomènes de concentration-dilution et/ou à la production primaire (i.e. production photosynthétique). L'ensemble des stations présente une très bonne qualité des eaux au sens de l'arrêté du 25 janvier 2010 modifié 27 juillet 2018 permettant d'évaluer l'état chimique des masses d'eau, et/ou du SEQ-Eau pour les paramètres considérés uniquement par celui-ci, en dehors des quelques phénomènes ponctuels précédents.

Comparés aux résultats de la chronique des dix dernières années, les résultats 2020 restent globalement dans la même gamme de valeurs. Les quelques différences sont en lien avec une hydrologie peu chahutée (MES moindres quelle que soit la station) ou une température plus basse au rejet influençant les équilibres calco-carboniques (pH plus élevé), par exemple. Parmi les différents ions, le pic d'ammonium au rejet semble lié à un apport indéterminé en ce point lors de la campagne de janvier, tandis que l'effet de la STEP de Saint-Vulbas tend à se modérer vis-à-vis des chlorures, Ces résultats restent également voisins de ceux de la station RCS de l'Agence de l'Eau située en amont de Lagnieu à Saint-Sorlin-en-Bugey.

Poissons

En 2020, les sept stations du suivi réglementaire du secteur fluvial du Rhône autour du CNPE de Bugey ont été échantillonnées lors de quatre campagnes (mai, juin, août, et octobre; Tableau 1). Nous avons fourni une description de la structure de la communauté piscicole estimée à partir de nos échantillonnages pour évaluer si cette communauté était différente entre l'amont et l'aval du CNPE de Bugey. La structure de la communauté a été évaluée à travers l'estimation de la richesse spécifique, des abondances et des biomasses totales sur l'année 2020, par campagne de pêche, par station de pêche, par espèce puis par taxon ou groupe de taille (Grands et Petits individus, ces derniers étant principalement les juvéniles de première année) et entre l'amont et l'aval du CNPE de Bugey.

Tableau 1 : Dates des quatre campagnes d'échantillonnage de la communauté piscicole du Rhône à Bugey en 2020

Numéro de campagne	Dates
Campagne 1 – BUG0520	19 et 20 mai 2020
Campagne 2 – BUG0620	23 et 24 juin 2020
Campagne 3 – BUG0820	17 et 18 août 2020
Campagne 4 – BUG1020	20 et 21 octobre 2020

L'image globale du peuplement piscicole du Rhône dans le secteur du Bugey qui émerge de l'analyse des données issues des pêches de 2020 montre une communauté piscicole riche de 21 espèces dont 13 sont présentes systématiquement depuis 2000. Le peuplement est relativement pauvre compte tenu du potentiel minimum de 32 espèces (nb d'espèces capturées depuis 2000) et déséquilibré du fait de la domination de seulement quelques espèces en abondance comme en biomasse accompagnées de beaucoup d'espèces très peu abondantes (Shannon = 2.8 et Equitabilité = 0.64). Dans le secteur du Bugey, le peuplement de poissons attendu doit être plus riche en blageon, barbeau, gardon, ablette et surtout vandoise (on pourrait même ajouter les salmonidés truite et ombre commun) et en carnassiers autres que les brochets sans doute issus d'empoissonnement pour la plupart ou le silure (plutôt opportuniste). Le nombre total de poissons capturés en 2020 est de 5246 ind/30 min et la biomasse estimée totale capturée de 38.5 kg/30 min est faible, notamment à cause d'une abondance très faible des gros individus. La très forte proportion de jeunes de l'année (Petits individus, 81%) explique aussi l'essentiel de cette faible

biomasse. Mais l'échantillonnage en grand fleuve ne pouvant s'effectuer efficacement qu'en bordure, là où se trouvent les Petits individus, leur forte proportion est « logique ».

Les conditions hydrologiques (débit faible) et thermiques (température de l'eau très chaude) pendant la reproduction des poissons en 2020 n'a peut-être pas été très favorable pour toutes les espèces. Le recrutement 2020 ne semble pas avoir été bon pour le gardon, le spirlin ou le goujon. En revanche la brème bordelière et surtout le hotu présentent une belle cohorte 2020 dans nos échantillonnages.

A l'échelle de la station, de 1 à 14 espèces ont été capturées, avec une abondance variant de moins de 10 ind/Ha à plus de 10000 ind/Ha pour une biomasse de quelques dizaines de grammes à plus de 100 kg/Ha. Seulement neuf espèces dominent la structure du peuplement de poissons en abondance. Ces espèces sont par ordre décroissant d'abondance totale : le hotu, la brème bordelière, le spirlin, le chevaine, le barbeau, le goujon, l'ablette, le silure et le gardon. Il existe une forte variabilité des effectifs capturés par hectare en fonction de la campagne d'échantillonnage pour toutes les stations, une forte variabilité pour une station d'une campagne à l'autre et d'une station à l'autre par campagne. Cette variabilité spatiale et temporelle des abondances par espèce se retrouve encore à l'échelle des groupes de taille (taxons). La variabilité spatiale et temporelle de la composition du peuplement en biomasse est très similaire à ce que révèle l'abondance du fait d'un nombre restreint de gros individus capturés en 2020.

Cette structure de peuplement n'est pas stable dans le temps (entre campagnes) puisqu'en mai et juin peu d'espèces et peu d'individus ont été capturés. Un des résultats les plus importants cette année est de constater que la structure du peuplement de poissons évolue au cours de l'année mais que pour une date donnée la répartition des espèces et des taxons à l'amont et à l'aval sont assez comparables. C'est notamment les cas pour les neuf espèces les plus abondantes qui dominent le peuplement de poissons aussi bien à l'amont qu'à l'aval. Même si des écarts restent parfois plus ou moins importants entre l'amont et l'aval du CNPE (exemple en 2020 il y a plus de Grands individus en aval qu'en amont en octobre), pratiquement toutes les espèces et tous les taxons sont observés en amont comme en aval.

Diatomées

En 2020, la richesse diatomique globale est de 143 taxons et la richesse unitaire est en moyenne de 33,2 taxons par station. Ces deux valeurs sont inférieures à la moyenne de la chronique d'étude 2015-2020 (respectivement 153 et 38,1 taxons). Depuis 2017, la richesse diatomique globale dans le secteur du CNPE de Bugey est toutefois sensiblement équivalente, après deux premières années élevées.

Les peuplements apparaissent globalement bien équilibrés (J') et diversifiés (H'). Le niveau de richesse atteint est cohérent avec celui des années précédentes.

La note IBD moyenne est de 15,9, soit la plus élevée de la chronique d'étude depuis la prise en compte de ce descripteur en 2015 (valeur inter-annuelle moyenne de 15,0). La majorité des notes correspond à une bonne qualité d'eau. La note moyenne 2020 s'inscrit dans une tendance à la hausse de la note IBD depuis le début du suivi. Les notes IPS présentent une tendance à être légèrement inférieures à celles de l'IBD ce qui est une tendance naturelle de cet indice. L'indice IDS/E est élevé (>3,5) et montre une altération globale modérée. L'évolution inter-dates ou interstations des indices IPS et IDS/E est très similaire à celle de l'IBD renforçant les résultats de ce dernier.

L'homogénéité des notes IBD dans ce secteur du Rhône a tendance à devenir une constante. Ce résultat traduit une qualité de l'eau au sens IBD elle aussi globalement homogène et relativement indifférente au rejet du CNPE, aux fluctuations du milieu ou aux problématiques d'échantillonnage liées au marnage important dans ce secteur.

Du point de vue taxonomique, la cohorte des espèces dominantes à la fois sur le critère d'abondance et d'occurrence est très similaire aux années précédentes. Elles sont classiquement

ubiquistes et cosmopolites, constituant un fond diatomique constant du Rhône à Bugey. Le taxon dominant 2020 est Achnanthidium delmontii (ADMO), espèce singulière couramment rencontrée depuis le début du suivi. Cette espèce, invasive, montre notamment une saisonnalité très nette en lien possible avec la température de l'eau. Le profil écologique (au sens de l'IBD) de ces espèces est homogène et montre une qualité d'eau globalement bonne (classe 5/7). Au regard des caractéristiques autoécologiques de Van Dam et al. (1994), elles sont tolérantes aux nutriments et beaucoup moins à la matière organique, résultat conforme aux résultats de l'indice IDS/E.

D'une manière générale, l'analyse 2020 des peuplements diatomiques du Rhône à Bugey montre une situation très homogène, à la fois spatiale (entre les stations) et temporelle (depuis le début du suivi). Les variations observées restent dans des écarts globalement faibles, indépendamment des conditions hydrologiques et/ou d'échantillonnage, aussi bien vis-à-vis des indices que des espèces dominantes. Aucun impact significatif du rejet n'est mis en évidence sur le peuplement diatomique, cette station ne présentant pas de fléchissement particulier par rapport aux autres secteurs étudiés. Paradoxalement, et de manière récurrente, la richesse taxonomique est d'ailleurs souvent supérieure.

Macroinvertébrés

L'étude IBGA-DCE 2020 de la macrofaune benthique du Rhône aux environs du CNPE du Bugey a permis d'échantillonner 77 taxons (aux limites systématiques de la méthode, à savoir a maxima le Genre), soit 58 taxons en amont (Saint-Vulbas), 56 en aval immédiat du rejet et 44 taxons en aval (Loyettes). Les substrats artificiels déposés en zone intermédiaire sont toujours la technique d'échantillonnage permettant la capture du plus grand nombre de taxons (63) par opposition aux dragages du chenal (36 taxons) et aux filets littoraux (51 taxons).

La richesse totale apparaît en décroissance constante depuis le maximum de 110 unités enregistré en 2016. La perte taxonomique est ainsi de 30% en 4 ans. Ceci est toutefois variable selon les stations et selon les techniques d'échantillonnage (stabilisation pour les dragages par exemple), mais le constat à la baisse est malgré tout globalement général et s'accentue, même si il a pu être artificiellement amplifié cette année avec l'absence d'échantillonnage par substrats artificiels et dragages lors de la première campagne 2020 en raison du confinement lié à la crise sanitaire.

La richesse totale moyenne sur la période 2015-2020 décroît progressivement de l'amont vers l'aval (79 taxons à l'amont, 74 au rejet et seulement 62 à l'aval, pour une moyenne générale de 96 taxons). Selon la technique d'échantillonnage, elle est en moyenne supérieure en zone rivulaire (65 taxons pour les filets de bordures) et plus faible dans le chenal (53 taxons pour les dragages). Les substrats artificiels déposés en zone intermédiaire, et échantillonnant aussi bien la faune en place que celle en dérive, sont les plus biogènes, permettant en moyenne la capture de 83 taxons.

Outre la chute accélérée de la richesse, ces dernières années restent marquées du point de vue taxonomique par la très forte abondance des Crustacés exotiques Jaera istri, apparu en 2017, qui abrite cette année 45% des individus, et Dikerogammarus villosus (28% des individus), tandis que les Gammares natifs ont totalement disparu. De manière similaire aux années précédentes, quelques taxons concentrent une majorité d'individus, Jaera, Dikerogammarus et les Chironomes représentent ainsi 90% de l'abondance totale. Parmi les 10 taxons sub-résidants > 0,1% à dominants (i.e. > 5%), 5 d'entre eux sont exotiques (2 Crustacés, 2 Mollusques et 1 Polychète), soit près de 77% des individus. Deux taxons représentatifs du Rhône restent malgré tout présents parmi ceux-ci : le Mollusque Ancylus fluviatilis et le Trichoptère Psychomyia pusilla. L'ensemble de ces 10 taxons abrite 99% de l'abondance 2020...

Les substrats artificiels, technique d'échantillonnage utilisée depuis les origines du suivi, en dépit d'un changement de type de substrat à partir de 2015 afin de satisfaire à la méthode DCE (multiplaques Verneaux vs sisal-pierres IBGA) permettent d'appréhender l'évolution

temporelle long terme. Si la richesse taxonomique totale IQBP (niveau d'identification systématique à la famille) montre une tendance constante à l'accroissement au long de la chronique de suivi depuis 1980 (maximums de 92 et 93 taxons en 2017 et 2015), elle amorce une chute

continue depuis 3 ans pour atteindre 62 taxons en cette année (même si celle-ci a été marquée par une campagne en moins pour cause de crise sanitaire). La valeur 2020 est inférieure à toutes les moyennes calculées sur la chronique d'étude : 63 taxons en moyenne depuis 1980, 75 depuis l'année 2000, 79 sur la dernière décennie, par exemple. Ce constat est valable quelle que soit la station, les stations amont RG et aval RG atteignant leur plus basse richesse historique (respectivement 33 et 19 taxons). Le changement de type de substrat artificiel effectué en 2015 afin de satisfaire à la méthode DCE peut difficilement être incriminé, plusieurs parmi les plus fortes valeurs étant postérieures (richesse stations amont RD et rejet et richesse totale en particulier). Hormis le changement de type de substrat, ceux-ci sont posés strictement aux mêmes endroits, il reste donc difficile d'apporter une explication définitive et satisfaisante.

En termes de qualité biologique DCE, le bon potentiel biologique est atteint pour les stations amont et rejet quelle que soit la date, aussi bien pour les échantillons filets+dragages (i.e.F+D) seuls que pour l'ensemble des 12 échantillons, excepté bien évidemment lors de la campagne tronquée d'avril. L'apport des substrats artificiels permet à la station amont d'atteindre la classe très bon en septembre. A la station aval, systématiquement atteint jusqu'en 2018, atteint une seule fois en 2019, le bon potentiel ne l'est jamais cette année, cette station étant au mieux de potentiel biologique moyen en juin et septembre.

D'un point de vue méthodologique, la comparaison de la méthode originelle (substrats artificiels et calcul de l'IQBP) et de la méthode DCE permet de mettre en évidence l'apport des différents compartiments (dérive pour les substrats, zone rivulaire pour les filets, chenal pour les dragages) et leur complémentarité. La combinaison rive+chenal (i.e. filets+dragages) apparait toujours plus biogène que la zone intermédiaire échantillonnée par les substrats artificiels (IQBP), en moyenne de 4,5 taxons et de 4 points indiciels, ceci étant particulièrement sensible à la station aval (+7 taxons, +5,2 points). Toutefois, chaque technique (i.e. milieu prospecté) contribue spécifiquement au résultat final tant en termes de richesse (jusqu'à une dizaine de taxons pour le couple filets+dragages) que de note indicielle (de 3 à 7 points d'indice pour respectivement les substrats artificiels et la seule combinaison des deux techniques précédentes).

Du point de vue stationnel, la disparité (baisse) amont-aval reste présente au fil des années, tant en termes de richesse que de qualité indicielle. Ce phénomène tend à s'accentuer sur les dernières années : ainsi, la richesse totale (i.e. DCE) moyenne en RD est de 58 taxons en amont et de 41 en aval sur les 10 dernières années alors que, si elle reste à 58 en amont, elle n'est plus que de 34 en aval en moyenne depuis 2015. Si il apparait difficile de trancher dans des milieux à stress multiples comme le Rhône aménagé, le fait que la combinaison F+D de la méthode DCE soit d'autant plus biogène à la station aval par rapport aux substrats artificiels IQBP met bien en évidence l'existence de conditions hydrauliques particulièrement discriminantes à cette station, en particulier avec le violent courant le long de la digue d'enrochements RG, voire thermiques nos mesures physicochimiques mensuelles montrant, un échauffement résiduel moyen sur la dernière décennie de 3,2°C entre l'amont et l'aval RD ainsi qu'une température moyenne 2,8°C plus élevée entre cette dernière et la rive opposée.

Toutefois, il faut garder à l'esprit que dans un milieu aménagé et soumis à de nombreux stress anthropiques comme le Rhône (aménagement physique, éclusées énergétiques, rejets thermiques, opérations régulières de chasse des sédiments, etc.), (i) les influences sont multi-factorielles et agissent en synergie et (ii) les fluctuations inter-annuelles inhérentes à tout écosystème sont d'autant plus exacerbées.

Conclusion

L'influence du fonctionnement du CNPE de Bugey reste principalement notable au travers du réchauffement engendré en rive droite à l'aval immédiat du site, un échauffement résiduel étant toujours présent à Loyettes en dépit des phénomènes de mélange et de dilution en cours. Le fonctionnement 2020 se caractérise surtout par l'absence d'échauffement lié aux réacteurs R2 et

R3 à partir de mai. Le fonctionnement et la qualité physico-chimique de l'eau restent aucunement altérés par cet échauffement.

La structure très déséquilibrée du peuplement de poissons du Rhône dans le secteur du Bugey, la forte variabilité spatiale et temporelle des abondances / biomasses par espèce et par taxon, entre l'amont et l'aval du CNPE de Bugey, ne permettent pas de mettre en évidence un effet du fonctionnement du CNPE à l'échelle de l'année 2020.

Du point de vue biologique, l'analyse des peuplements diatomiques du Rhône à Bugey montre une situation très homogène sur les dernières années. Cette homogénéité est à la fois spatiale et temporelle. Les variations observées restent dans des écarts globalement faibles, indépendamment des conditions hydrologiques et/ou d'échantillonnage, aussi bien vis-à-vis des indices que des espèces dominantes. Aucun impact significatif du rejet n'est mis en évidence sur le peuplement diatomique et les analyses ne mettent pas en évidence de plus grande fragilité de ce compartiment et/ou la présence de certaines espèces polluotolérantes dans des conditions plus pénalisantes.

La situation des macroinvertébrés tend à se dégrader ces dernières années, tant globalement à l'échelle du secteur d'étude que du point de vue de la disparité amont-aval qui s'accentue au fil des années via l'échantillonnage par substrats artificiels en particulier, aussi bien en termes de richesse que d'effectif ou de note indicielle. Ce constat devient récurrent au fil du temps. Il reste toutefois difficile de trancher et d'apporter une explication définitive et satisfaisante, les influences étant multiples (thermie en RD, conditions hydrodynamiques en RG pour ce qui est de la station aval) et agissant en synergie dans ce type de milieu aménagé et soumis à de multiples stress anthropiques (aménagement physique, éclusées énergétiques, rejets thermiques, etc.). A cela s'ajoute la part de plus en plus grandissante des taxons invasifs qui représentent cette année plus de 75% des individus et le resserrement du pool de taxons constituant la base du peuplement de macroinvertébrés de ce secteur du Rhône puisque 10 taxons abritent 99% de l'abondance totale 2020.

Le rapport complet est disponible sur demande auprès du CNPE du Bugey.

2. Surveillance en conditions climatiques exceptionnelles

La prescription [EDF-BUG-126] de la décision modalités n°2014-DC-0442 prévoit qu'une surveillance chimique, physico-chimique, microbiologique et hydrobiologique spécifiques soit réalisée en cas de dépassement des valeurs limites applicables aux rejets en conditions climatiques normales (cf exigence [EDF-BUG-161] de la décision n°2014-DC-0443).

En 2020, le CNPE du Bugey n'a pas recouru à cette surveillance.

V. Acoustique environnementale

L'arrêté du 7 février 2012 fixe les règles générales applicables à toutes les phases du cycle de vie des installations nucléaire de base visant à garantir la protection des intérêts contre l'ensemble des inconvénients ou des risques que peuvent présenter les INB. Le titre IV sur la maîtrise des nuisances et de l'impact sur la santé et l'environnement fixe deux critères visant à limiter l'impact du bruit des installations nucléaires de base.

Le premier critère, appelé « émergence sonore » et s'exprimant en Décibel A - dB (A) est la différence de niveau sonore entre le niveau de bruit ambiant et le bruit résiduel. L'émergence sonore se calcule à partir de mesures réalisées aux premières habitations, en Zone à Émergence Réglementée (ZER).

Le deuxième critère, en vigueur depuis le 1^{er} juillet 2013, concerne le niveau sonore mesuré en dB (A) en limite d'établissement de l'installation.

Pour répondre à ces exigences réglementaires et dans l'optique de réduire l'impact de ses installations, EDF mène depuis 1999 des études d'impact acoustique basées sur des mesures de longue durée dans l'environnement et sur les matériels. En parallèle, des modélisations 3D sont réalisées pour hiérarchiser les sources sonores les plus prépondérantes, et si nécessaire, définir des objectifs d'insonorisation.

Les principales sources de bruit des installations nucléaires sont généralement les réfrigérants atmosphériques pour les CNPE équipés, les stations de pompage, les salles des machines, les cheminées du bâtiment des auxiliaires nucléaires, et les transformateurs.

La Mission Communication du CNPE du Bugey réalise des informations, par le biais du numéro vert du CNPE mais aussi en s'adressant directement aux mairies dans un rayon de 2 km (Saint-Vulbas, Loyettes, Vernas, Hières sur Amby), lors de la réalisation d'opérations pouvant générer du bruit, comme par exemple lors de la réalisation de certains essais périodiques sur l'installation.

Le numéro vert permet de retrouver toute l'actualité du CNPE du Bugey, 24 heures sur 24 : 0800 00 01 02.

Partie VII - Évaluation de l'impact environnemental et sanitaire des rejets de l'installation

Une surveillance des niveaux de radioactivité est effectuée dans l'environnement du site du Bugey dans le cadre du programme de surveillance réglementaire et du suivi radioécologique du site (cf. Partie VI Surveillance de l'environnement, I- Surveillance de la radioactivité dans l'environnement).

Les résultats de cette surveillance et des mesures associées montrent que la radioactivité mesurée dans l'environnement du site est principalement d'origine naturelle. Les niveaux de radioactivité artificielle mesurés dans l'environnement du site sont faibles et trouvent pour partie leur origine dans d'autres sources (industrie horlogère, retombées atmosphériques des essais nucléaires, Tchernobyl,...). L'analyse détaillée des résultats est présentée dans le rapport du suivi radioécologique annuel réalisé par IRSN, présenté en annexe 2.

L'IRSN produit également un bilan radiologique de l'environnement français disponible au lien suivant :

https://www.irsn.fr/FR/expertise/rapports_expertise/Documents/environnement/IRSN-ENV_Bilan-Radiologique-France-2015-2017.pdf

À partir des activités annuelles rejetées par radionucléide, une dose efficace³ est calculée en tenant compte des mécanismes de transfert de l'environnement jusqu'à l'homme. Cette dose permet de « mesurer » le niveau d'exposition attribuable aux rejets d'effluents radioactifs liquides et atmosphériques d'une installation et de le positionner par rapport à la limite réglementaire pour l'exposition de la population aux rayonnements ionisants conformément à l'article R1333-11 du Code de la Santé Publique.

Le calcul de dose efficace annuelle tient compte de données spécifiques à chaque site telles que les conditions météorologiques, les habitudes alimentaires des riverains, les conditions de dispersion des effluents rejetés dans le milieu récepteur, etc. Les données alimentaires et les temps consacrés aux activités intérieures ou extérieures dans les environnements terrestre et aquatique ont été actualisés en 2019 avec les dernières bases de données et enquêtes disponibles.

Les principales hypothèses retenues sont les suivantes :

- les habitants consomment pour partie des aliments produits dans l'environnement proche du site ;
- ils vivent toute l'année sur leur lieu d'habitation (non prise en compte de leurs périodes d'absence pour le travail, les vacances...);
- l'eau captée à l'aval des installations est considérée comme provenant de captages d'eaux superficielles, même s'il s'agit de captages en nappes d'eaux souterraines, ce qui revient à considérer que le milieu aquatique à l'aval du site est toujours influencé par les rejets d'effluents liquides de l'installation;

 $^{^3}$ La dose efficace est la somme des doses absorbées par tous les tissus, pondérée d'un facteur radiologique W_R (W_R = Radiation Weighting factor) facteur de pondération du rayonnement) pour tenir compte de la qualité du rayonnement (α , β , γ ...) et d'un facteur de pondération tissulaire W_T (W_T = Tissu Weighting factor) correspondant à la radiosensibilité relative du tissu exposé. La dose efficace a pour objectif d'apprécier le risque total et s'exprime en sievert (S_V). Elle est appelée communément « dose ».

- on considère que l'eau de boisson n'a subi aucun traitement de potabilisation (autre que la filtration), et donc qu'aucune rétention de radionucléides n'a été effectuée lors de procédés de traitement ;
- la pêche de poissons dans les fleuves à l'aval des sites est supposée systématique, sans exclure les zones de pêche interdite.

Les principaux facteurs d'incertitudes dans le calcul de dose sont associés essentiellement à quelques données et paramètres difficiles à acquérir sur le terrain, tels que certaines caractéristiques de l'environnement et comportements précis des populations riveraines (les rations alimentaires par exemple).

L'échelle suivante présente des ordres de grandeur de doses résultant de situations courantes et la comparaison aux seuils réglementaires :

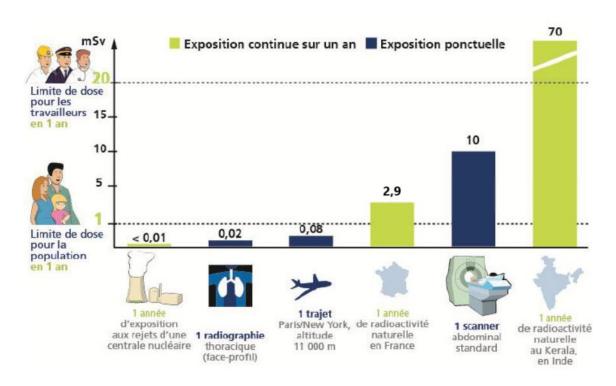


Figure 5 : Echelle des ordres de grandeur de doses résultant de situations courantes et comparaison aux seuils réglementaires (Source : EDF)

L'exposition moyenne de la population française aux rayonnements ionisants (d'origine naturelle et artificielle) est de 4,5 mSv/an. Les contributions des différentes sources d'exposition sont présentées sur la figure 3 ci-après.

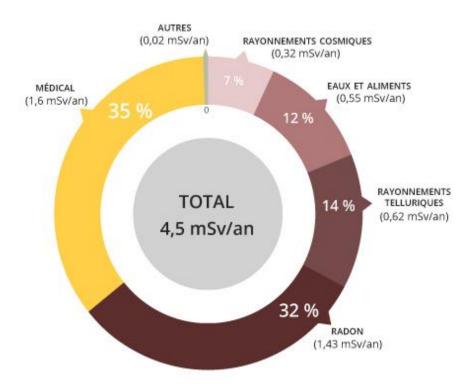


Figure 6 : Part relative des différentes sources d'expositions de la population française aux rayonnements ionisants (Source : Bilan IRSN 2015)

Les tableaux suivants fournissent les valeurs de dose efficace totale calculées à partir des rejets radioactifs réels de l'année 2020 effectués par le site de Bugey, pour la personne représentative. Cette personne représente les individus pouvant recevoir la dose efficace annuelle maximale induite par les rejets d'effluents radioactifs autorisés du site.

ADULTE	Exposition externe (mSv)	Exposition interne (mSv)	Total (mSv)
Rejets d'effluents à l'atmosphère	1,9.10 ⁻⁶	1,1.10 ⁻⁵	1,3.10⁻⁵
Rejets d'effluents liquides	1,8.10 ⁻⁶	4,9.10 ⁻⁵	5,1.10 ⁻⁵
Total	3,8.10 ⁻⁶	6,0.10 ⁻⁵	6,4.10 ⁻⁵

ENFANT DE 10 ANS	Exposition externe (mSv)	Exposition interne (mSv)	Total (mSv)
Rejets d'effluents à l'atmosphère	1,9.10 ⁻⁶	1,0.10 ⁻⁵	1,2.10 ⁻⁵
Rejets d'effluents liquides	S.O.	5,0.10 ⁻⁵	5,0.10 ⁻⁵
Total	1,9.10 ⁻⁶	6,0.10 ⁻⁵	6,2.10 ⁻⁵

ENFANT DE 1 AN	Exposition externe (mSv)	Exposition interne (mSv)	Total (mSv)
Rejets d'effluents à l'atmosphère	1,9.10 ⁻⁶	1,7.10 ⁻⁵	1,9.10⁻⁵
Rejets liquides	S.O.	7,4.10 ⁻⁵	7,4.10 ⁻⁵
Total	1,9.10 ⁻⁶	9,1.10 ⁻⁵	9,3.10 ⁻⁵

Les valeurs de doses calculées sont inférieures à 1.10⁻⁴ mSv/an pour l'adulte, pour l'enfant de 10 ans et pour l'enfant de 1 an.

Les valeurs de doses calculées pour l'adulte, l'enfant de 10 ans et l'enfant de 1 an, attribuables aux rejets d'effluents radioactifs de l'année 2020 sont plus de 10 000 fois inférieures à la limite d'exposition fixée à 1 mSv par an pour la population, par l'article R1333-11 du Code de la Santé Publique. L'ensemble des populations résidant de manière permanente ou temporaire autour du site est exposé à une dose efficace inférieure ou égale à la dose calculée pour la personne représentative, présentée ci-dessus.

Ces résultats sont cohérents avec ceux de l'étude d'impact de l'installation, dont les hypothèses et modalités de calcul restent pertinentes au regard des évolutions scientifiques.

Partie VIII - Gestion des déchets

Comme toute activité industrielle, la production d'électricité d'origine nucléaire génère des déchets, dont des déchets conventionnels et radioactifs à gérer avec la plus grande rigueur.

Responsable légalement, industriellement et financièrement des déchets qu'il produit, EDF a, depuis l'entrée en service de ses premières centrales nucléaires, mis en œuvre des procédés adaptés qui permettent de protéger efficacement l'environnement, les populations, les travailleurs et les générations futures contre les risques associés à ses déchets.

La démarche industrielle repose sur 4 principes :

- limiter les quantités produites et la nocivité des déchets ;
- trier par nature et niveau de radioactivité;
- conditionner et préparer la gestion à long terme ;
- isoler les déchets de l'homme et de l'environnement.

Pour les installations nucléaires de base du CNPE du Bugey, la limitation de la production des déchets se traduit par la réduction, pour atteindre des valeurs aussi basses que possible, du volume et de l'activité des déchets dès la phase d'achat de matériel ou de la prestation, durant la phase de préparation des chantiers et lors de leur réalisation.

Les déchets radioactifs

Les modalités de gestion mises en œuvre visent notamment à ce que les déchets radioactifs n'aient aucune interaction avec les eaux (nappe et cours d'eau) et les sols. Les opérations de tri, de conditionnement, de préparation à l'expédition s'effectuent dans des locaux dédiés et équipés de systèmes de collecte d'effluents éventuels.

Avant de sortir des bâtiments, les déchets radioactifs bénéficient tous d'un conditionnement étanche qui constitue une barrière à la radioactivité et prévient tout transfert dans l'environnement.

Les contrôles réalisés par les experts internes et les pouvoirs publics sont nombreux et menés en continu pour vérifier l'absence de contamination.

Les déchets conditionnés et contrôlés sont ensuite expédiés vers les filières de traitement ou de stockage définitif.

Les mesures prises pour limiter les effets de ces déchets sur la santé comptent parmi les objectifs visés par les dispositions mises en œuvre pour protéger la population et les intervenants des risques de la radioactivité. L'ensemble de ces dispositions constitue la radioprotection. Ainsi, pour protéger les personnes travaillant dans les centrales, et plus particulièrement les équipes chargées de la gestion des déchets radioactifs, des mesures simples sont prises, comme la mise en place d'un ou plusieurs écrans (murs et dalles de béton, parois en plomb, verres spéciaux chargés en plomb, eau des piscines, etc.), dont l'épaisseur est adaptée à la nature du rayonnement du déchet.

1. Les catégories de déchets radioactifs

Selon la durée de vie des éléments radioactifs contenus et le niveau d'activité radiologique qu'ils présentent, les déchets sont classés en plusieurs catégories. On distingue

les déchets « à vie courte » des déchets « à vie longue » en fonction de leur période (une période s'exprime en années, jours, minutes ou secondes. Elle quantifie le temps au bout duquel l'activité radioactive initiale du déchet est divisée par deux).

Tous les déchets dits « à vie courte » ont une période inférieure ou égale à 31 ans. Ils bénéficient de solutions de gestion industrielles définitives dans les centres spécialisés de l'Andra situés dans l'Aube à Morvilliers (déchets de très faible activité, TFA) ou Soulaines (déchets de faible à moyenne activité à vie courte, FMAVC).

Ces déchets proviennent essentiellement :

- des systèmes de filtration (épuration du circuit primaire : filtres, résines, concentrats, boues...);
- des opérations de maintenance sur matériels : pompes, vannes...
- des opérations d'entretien divers : vinyles, tissus, gants...
- de certains travaux de déconstruction des centrales mises à l'arrêt définitif (gravats, pièces métalliques...).

Le conditionnement des déchets triés consiste à les enfermer dans des emballages ou contenants adaptés pour éviter toute dissémination de la radioactivité. On obtient alors des déchets conditionnés, appelés aussi «colis de déchets». Sur les sites nucléaires, le choix du conditionnement dépend de plusieurs paramètres, notamment du niveau d'activité, des dimensions du déchet, de l'aptitude au compactage, à l'incinération et de la destination du colis. Ainsi, le conditionnement de ces déchets est effectué dans différents types d'emballages : coque ; fût ou caisson métallique ; fût plastique (PEHD : polyéthylène haute densité) pour les déchets destinés à l'incinération dans l'installation Centraco ; big-bag ou casier.

Les progrès constants accomplis, tant au niveau de la conception des centrales que de la gestion du combustible et de l'exploitation des installations, ont déjà permis de réduire les volumes de déchets à vie courte de façon significative. Ainsi, les volumes des déchets d'exploitation ont été divisés par trois depuis 1985, à production électrique équivalente.

Les déchets dits « à vie longue » ont une période supérieure à 31 ans. Ils sont générés :

- par le traitement du combustible nucléaire usé effectué dans l'usine ORANO de la Hague, dans la Manche ;
- par la mise au rebut de certaines pièces métalliques issues des réacteurs ;
- par la déconstruction des centrales d'ancienne génération.

Le remplacement de certains équipements du cœur des réacteurs actuellement en exploitation (« grappes » utilisées pour le réglage de la puissance, fourreaux d'instrumentation, etc.) produit des déchets métalliques assez proches en typologie et en activité des structures d'assemblages de combustible : il s'agit aussi de déchets « de moyenne activité à vie longue » (MAVL) qui sont entreposés dans les piscines de désactivation.

Le traitement des combustibles usés consiste à séparer les matières qui peuvent être valorisées et les déchets. Cette opération est réalisée dans les ateliers spécialisés situés dans l'usine ORANO.

Après une utilisation en réacteur pendant quatre à cinq années, le combustible nucléaire contient encore 96 % d'uranium qui peut être recyclé pour produire de nouveaux assemblages de combustible. Les 4 % restants (les « cendres » de la combustion nucléaire) constituent les déchets ultimes qui sont vitrifiés et coulés dans des conteneurs en acier

inoxydable : ce sont des déchets « de haute activité à vie longue (HAVL) ». Les parties métalliques des assemblages sont compactées et conditionnées dans des conteneurs en acier inoxydable qui sont entreposés dans l'usine précitée : ce sont des déchets « de moyenne activité à vie longue (MAVL) ».

Depuis la mise en service du parc nucléaire d'EDF, et à production énergétique équivalente, l'amélioration continue de l'efficacité énergétique du combustible a permis de réduire de 25 % la quantité de combustible consommée chaque année. Ce gain a permis de réduire dans les mêmes proportions la production de déchets issus des structures métalliques des assemblages de combustible.

La déconstruction produit également des déchets de catégorie similaire. Enfin, les empilements de graphite des anciens réacteurs dont la déconstruction est programmée généreront des déchets « de faible activité à vie longue (FAVL) ».

En ce qui concerne les déchets de haute et moyenne activité « à vie longue », la solution industrielle de gestion à long terme retenue par la loi du 28 juin 2006 est celle du stockage géologique (projet Cigéo, en cours de conception). Les déchets déjà existants sont entreposés en toute sûreté sur leur lieu de production et commencent progressivement à être transférés à l'ICEDA (Installation de Conditionnement et d'Entreposage des Déchets Activés) en service depuis septembre 2020.

Le tableau ci-dessous présente les différentes catégories de déchets, les niveaux d'activité et les conditionnements utilisés.

Types déchet	Niveau d'activité	Durée de vie	Classification	Conditionnement		
Filtres d'eau et résines primaires	Faible et Moyenne		FMA-VC (faible et moyenne activité à vie courte)	Fûts, coques		
Filtres d'air						
Résines secondaires						
Concentrats, boues		Courte				
Pièces métalliques	ces Très faible, iques Faible		TFA (très faible activité),	Casiers, big-bags, futs, coques,		
Matières	et Moyenne	Moyenne	FMA-VC	caissons		
plastiques,						
cellulosiques Déchets non						
métalliques						
(gravats)						
Déchets graphite	Faible		FA-VL (faible activité à vie longue)	Entreposage sur site		
Pièces métalliques et		Longue	MA-VL (moyenne	Entreposage sur site (en piscine de refroidissement pour		
autres déchets actives	Moyenne		activité à vie longue)	les grappes et autres déchets activés REP)		

2. Le transport des déchets

Après conditionnement, les colis de déchets peuvent être orientés vers :

- le centre industriel de regroupement, d'entreposage et de stockage des déchets de très faible activité (CIRES) exploité par l'Andra et situé à Morvilliers (Aube);
- le centre de stockage de l'Aube (CSA) pour les déchets à faible ou moyenne activité exploité par l'Andra et situé à Soulaines (Aube) ;
- l'installation Centraco exploitée par Cyclife France et située à Marcoule (Gard) qui reçoit les déchets destinés à l'incinération et à la fusion. Après traitement, ces déchets sont évacués vers l'un des deux centres exploités par l'Andra.

DE LA CENTRALE AUX CENTRES DE TRAITEMENT ET DE STOCKAGE

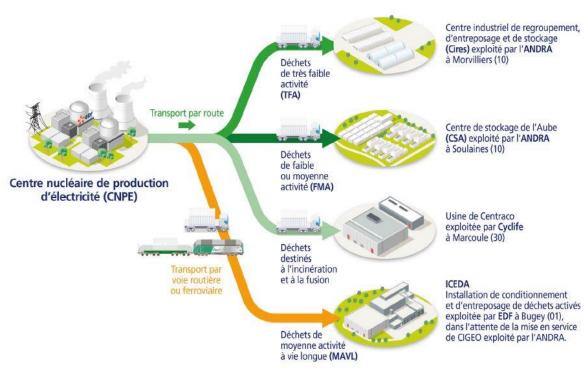


Figure 7 : Transport des déchets radioactifs (Source : EDF)

3. Les quantités de déchets entreposées au 31/12/2020

Le tableau suivant présente les quantités de déchets en attente de conditionnement au 31 décembre 2020 pour les 4 réacteurs en fonctionnement du CNPE du Bugey.

Catégorie déchet	Quantité entreposée au 31/12/2020	Commentaires
TFA	266 tonnes	En conteneur sur l'aire TFA
FMAVC (Liquides)	35 tonnes	Effluents du lessivage chimique, huiles, solvants
FMAVC (Solides)	59 tonnes	Localisation Bâtiment des Auxiliaires Nucléaires et Bâtiment Auxiliaire de Conditionnement

Catégorie déchet	Quantité entreposée au 31/12/2020	Commentaires
FAVL	0 tonnes	-
MAVL	219 objets	Concernent les grappes et les étuis dans les piscines de désactivation (déchets technologiques, galette inox, bloc béton et chemise graphite)

Le tableau suivant présente les quantités de déchets conditionnés en attente d'expédition au 31 décembre 2020 pour les 4 réacteurs en fonctionnement du CNPE du Bugey.

Catégorie déchet	Quantité entreposée au 31/12/2020	Type d'emballage
TFA	55 colis	Tous types d'emballages confondus
FMAVC	591 colis	Fûts (métalliques, PEHD)
FMAVC	104 colis	Coques béton
FMAVC	9 colis	Autres (caissons, pièces massives)

Le tableau suivant présente le nombre de colis évacués et les sites d'entreposage en 2020 pour les 4 réacteurs en fonctionnement du CNPE du Bugey.

Site destinataire	Nombre de colis évacués
Cires à Morvilliers	146
CSA à Soulaines	648
Centraco à Marcoule	3290

En 2020, 4 084 colis ont été évacués vers les différents sites de traitement ou de stockage appropriés (Centraco et Andra).

Le tableau suivant présente les quantités de déchets en attente de conditionnement au 31 décembre 2020 pour l'unité Bugey 1 en déconstruction.

Catégorie déchet	Quantité entreposée au 31/12/2020	Commentaires
TFA	35 tonnes	DRA – colis + FS
FMAVC (Liquides)	9 tonnes	DRA – colis + FS
FMAVC (Solides)	21 tonnes	DRA – colis + FS
FAVL	0 tonne	-
MAVL	0 objet	-

Le tableau suivant présente les quantités de déchets conditionnés en attente d'expédition au 31 décembre 2020 pour l'unité Bugey 1 en déconstruction.

Catégorie déchet	Quantité entreposée au 31/12/2020	Type d'emballage
TFA	76 colis	Tous types d'emballages confondus
FMAVC	0 colis	Coques béton
FMAVC	113 colis	Fûts (métalliques, PEHD)
FMAVC	1 colis	Autres (caissons, pièces massives)

Le tableau suivant présente le nombre de colis évacués et les sites d'entreposage en 2020 pour l'unité Bugey 1 en déconstruction.

Site destinataire	Nombre de colis évacués
Cires à Morvilliers	48
CSA à Soulaines	5
Centraco à Marcoule	72

En 2020, 125 colis ont été évacués vers les différents sites de traitement ou de stockage appropriés (Centraco et Andra).

Le tableau suivant présente les quantités de déchets en attente de conditionnement au 31 décembre 2020 pour l'ICEDA.

Catégorie déchet	Quantité entreposée au 31/12/2020	Commentaires
TFA	9 kg	Local de collecte AN296
FMAVC (Liquides)	< 500 L	Effluents aqueux
FMAVC (Solides)	0 kg	Local de collecte AN296 et déchets induits en cellules processs
FAVL	0 kg	-
MAVL	6,7 tonnes	DAD et DAE réceptionnés sur ICEDA en emballage de transport R73 et TN12 et en attente de conditionnement

En 2020, l'ICEDA a produit 9 kg de déchets radioactifs.

L'ICEDA n'a aucun déchet conditionné en attente d'expédition au 31 décembre 2020 et n'a évacué aucun colis en 2020.

II. Les déchets non radioactifs

Conformément à l'arrêté INB et à la décision ASN 2015-DC-0508, les INB établissent et gèrent un plan de zonage déchets, qui vise à distinguer :

- les zones à déchets conventionnels (ZDC) d'une part, à l'intérieur desquelles les déchets produits ne sont ni contaminés ou activés ni susceptibles de l'être ;
- les zones à production possible de déchets nucléaires (ZPPDN) d'autre part, à l'intérieur desquelles les déchets produits sont contaminés, activés ou susceptibles de l'être.

Les déchets conventionnels produits par les INB sont ceux issus de ZDC et sont classés en 3 catégories :

- les déchets inertes (DI), qui ne contiennent aucune trace de substances toxiques ou dangereuses, et ne subissent aucune modification physique, chimique ou biologique importante pour l'environnement (déchets minéraux, verre, déblais, terres et gravats, ...);
- les déchets non dangereux non inertes, qui ne présentent aucune des propriétés qui rendent un déchet dangereux (gants, plastiques, déchets métalliques, papier/carton, caoutchouc, bois, câbles électriques, ...);
- les déchets dangereux (DD) qui contiennent des substances dangereuses ou toxiques, ou sont souillés par de telles substances (accumulateurs au plomb, boues/terres marquées aux hydrocarbures, résines, peintures, piles, néons, déchets inertes et industriels banals souillés, déchets amiantifères, bombes aérosols, ...).

Le tableau ci-dessous présente les quantités de déchets conventionnels produites en 2020 par les INB d'EDF.

Quantités 2020 en			Déchets non dangereux non inertes		Déchets inertes		Total	
tonnes	Produits	Valorisés	Produits	Valorisés	Produits	Valorisés	Produits	Valorisés
Sites en exploitation	9 298	6 599	37 876	33 797	66 410	65 409	113 585	105 805
Sites en déconstruction	1 017	56,1	707	609	447	447	2 170	1 112

Les déchets conventionnels sont gérés conformément aux principes définis dans la directive cadre sur les déchets :

- réduire leur production et leur dangerosité par une gestion optimisée,
- favoriser le recyclage et la valorisation.

La production de déchets inertes a été historiquement conséquente en 2020 du fait d'importants chantiers, en particulier les chantiers de modifications post Fukushima et l'aménagement de parkings ou bâtiments tertiaires. Les productions de déchets dangereux et de déchets non dangereux non internes restent relativement stables.

De nombreuses actions sont mises en œuvre par EDF pour en optimiser la gestion, afin notamment d'en limiter les volumes et les effets sur la santé et l'environnement. Parmi celles-ci, peuvent être citées :

- la création en 2006 du Groupe Déchets Economie Circulaire, chargé d'animer la gestion des déchets conventionnels pour l'ensemble des entités d'EDF. Ce groupe, qui s'inscrit dans le cadre du Système de Management Environnemental certifié ISO 14001 d'EDF, est composé de représentants des Divisions/Métiers des différentes Directions productrices de déchets. Ses principales missions consistent à apporter de la cohérence en proposant des règles et outils de référence aux entités productrices de déchets.
- les entités productrices de déchets conventionnels disposent d'un outil informatique qui permet en particulier de maîtriser les inventaires de déchets et leurs voies de gestion,
- la définition depuis 2008 d'un objectif de valorisation pour l'ensemble des déchets valorisables. Cet objectif est actuellement fixé à 90%,
- la prise en compte de la gestion des déchets dans les contrats de gestion des sites.
- la mise en place de structures opérationnelles assurant la coordination et la sensibilisation à la gestion des déchets de l'ensemble des métiers,
- la création de stages de formation spécifiques « gestion des déchets conventionnels »,
- le recensement annuel des actions de prévention de production des déchets.

En 2020, les 4 unités de production du CNPE du Bugey ont produit 8 911 tonnes de déchets conventionnels : 92 % de ces déchets ont été valorisés ou recyclés.

Concernant l'unité en déconstruction Bugey 1, 1 613 tonnes de déchets conventionnels ont été produites en 2020. 37 % de ces déchets ont été valorisés ou recyclés.

uite gérés par la déche	nels ont été produites. Ce nt l'objet soit d'un recyclage	

ABREVIATIONS

- ANDRA Agence Nationale pour la gestion des Déchets RAdioactifs
- ASN Autorité Sûreté Nucléaire
- CNPE Centre Nucléaire de Production d'Électricité
- COT Carbone Organique Total
- DBO5 Demande Biologique en Oxygène sur 5 jours
- DCO Demande Chimique en Oxygène
- DUS Diesel d'Ultime Secours
- EBA Ventilation de balayage en circuit ouvert tranche à l'arrêt
- ESE Évènement Significatif Environnement
- FMA Faible Moyenne Activité
- ICPE Installations Classées pour la Protection de l'Environnement
- ICEDA Installation de Conditionnement et d'Entreposage de Déchets Activés
- INB Installation Nucléaire de Base
- IRSN Institut de Radioprotection et de Sûreté Nucléaire
- ISO International Standard Organization
- KRT Chaîne de mesure de radioactivité
- MES Matières En Suspension
- PA Produit d'Activation
- PF Produit de Fission
- REX Retour d'Expérience
- SME Système de Management de l'Environnement
- SMP Station Multi Paramètres
- TAC Turbine à Combustion
- TEU Traitement des Effluents Usés
- TFA Très Faible Activité
- THE Très Haute Efficacité
- UFC Unité Formant Colonie

ANNEXE 1 : Suivi de la concentration en amibes et en légionelles sur 2020

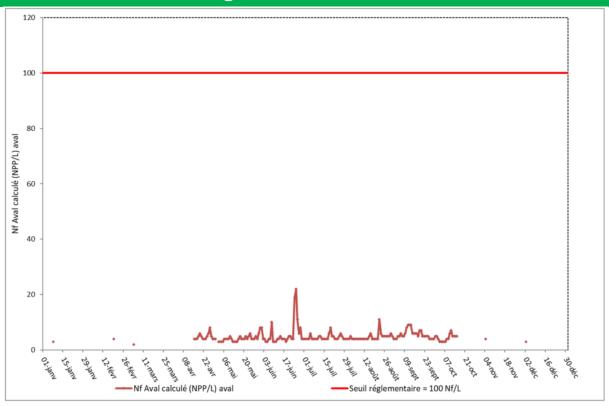
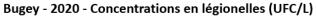



Figure 7 : Amibes calculées à l'aval dans le Rhône en 2020 (Source : EDF)

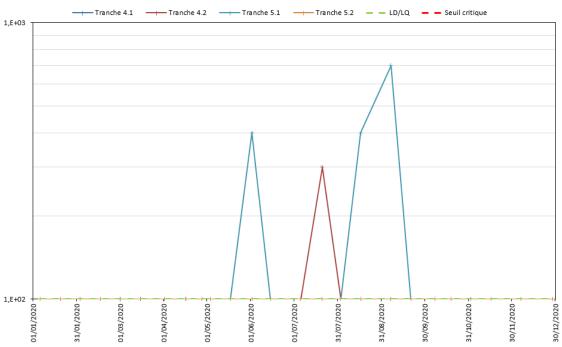


Figure 8 : Légionnelles mesurées dans les bassins des 4 circuits de refroidissement semifermés (Source : EDF)

ANNEXE 2 : Suivi radioécologique annuel du CNPE du Bugey Année 2020

Faire avancer la sûreté nucléaire

Suivi radioécologique annuel des CNPE du Rhône et du site en démantèlement de Creys-Malville

Année 2019

Rapport IRSN/2021-00434

Pôle Santé et Environnement Pôle Santé et Environnement Pôle Santé et Environnement

Service d'expertise et d'étude en radioprotection des populations et de la radioactivité dans l'environnement

Suivi radioécologique annuel des CNPE du Rhône et du site en démantèlement de Creys-Malville

Année 2019

Résumé

L'objectif du suivi radioécologique des CNPE implantés le long du Rhône et du site en démantèlement de Creys-Malville est de caractériser les niveaux de radioactivité dans l'environnement proche de ces sites dans des matrices représentatives des compartiments terrestre et aquatique. Il s'agit d'identifier les différentes sources, passées ou présentes, à l'origine de la présence des radionucléides observés dans l'environnement des sites et d'analyser l'évolution temporelle de leurs niveaux d'activité dans ces matrices.

Pour le compartiment terrestre, le ¹³⁷Cs est le seul radionucléide émetteur gamma détecté dans la quasi-totalité des échantillons, à des niveaux comparables à ceux des années précédentes. Ce radionucléide artificiel est issu des retombées atmosphériques globales anciennes (essais aériens d'armes nucléaires et accident de Tchernobyl). Pour l'année 2019, les échantillons prélevés dans l'environnement immédiat des CNPE de Saint-Alban-Saint-Maurice et du Tricastin ont été marqués par les rejets de tritium à l'atmosphère opérés par ces sites nucléaires. Il en va de même pour le ¹⁴C mesuré dans le lierre prélevé à proximité du site de Saint-Alban-Saint-Maurice-l'Exil pour lequel l'activité est supérieure au bruit de fond.

Pour le compartiment aquatique, le ¹³⁷Cs est mesuré dans presque tous les échantillons prélevés et analysés. Si sa présence est pour l'essentiel héritée des retombées atmosphériques globales anciennes (essais nucléaires aériens et accident de Tchernobyl), une contribution des rejets liquides des CNPE ne peut être exclue, même si celle-ci ne peut être quantifiée. En effet, la présence d'autres radionucléides émetteurs gamma d'origine artificielle (58Co, 60Co, 110mAg) mesurés dans des échantillons prélevés en aval des sites de Bugey, Saint-Alban-Saint-Maurice-l'Exil, Cruas-Meysse et Tricastin attestent du marquage de l'environnement aquatique par les rejets d'effluents liquides de ces sites. L'environnement aquatique présente également un marquage en tritium libre et organiquement lié dont l'origine peut être attribuée aux rejets liquides des différentes installations rhodaniennes ainsi qu'aux activités passées de l'industrie horlogère. En effet, d'une part plusieurs résultats de mesure sont supérieurs au bruit de fond observé à distance de tout apport industriel, d'autre part les échantillons prélevés en aval présentent dans leur majorité des activités supérieures à celles mesurées dans les échantillons prélevés en amont. Un marquage en ¹⁴C est également mis en évidence en milieu aquatique depuis l'aval du CNPE de Saint-Alban-Saint-Maurice-l'Exil jusqu'en aval du Tricastin. Les échantillons de poissons prélevés dans la partie aval du Rhône présentent les activités les plus importantes, en relation possible avec le cumul des rejets qui conduit à des activités ambiantes supérieures à celles en amont de Saint-Alban-Saint-Maurice. L'1311 est mesuré en milieu aquatique dans les phanérogames immergées avec des activités supérieures en amont des sites ou équivalentes entre l'amont et l'aval. Aussi, il est difficile d'attribuer la présence de ce radionucléide strictement aux rejets d'effluents liquides des CNPE du Rhône et du site en démantèlement de Creys-Malville. La présence d'unités médicales dans les agglomérations riveraines est probablement à l'origine de ce marquage du milieu aquatique.

Enfin, la détection sporadique de ⁶³Ni est observée. Bien que présent dans les rejets des installations nucléaires, il est difficile de se prononcer du fait d'une connaissance encore peu robuste sur d'une part l'origine précise de ce radionucléide dans l'environnement et d'autre part sur la variabilité des activités dans l'environnement. Enfin, les seuils de décision pour le ⁵⁵Fe sont élevés et représentent un élément limitant l'interprétation dans l'état actuel des données disponibles.

0 OBJECTIFS

Électricité de France (EDF) a sollicité l'Institut de Radioprotection et de Sûreté Nucléaire (IRSN) pour effectuer un bilan radioécologique annuel de l'environnement proche des Centres Nucléaires de Production d'Électricité (CNPE) du Rhône et du site en démantèlement de Creys-Malville.

L'objectif de cette étude est de caractériser, chaque année, les niveaux de radioactivité dans l'environnement proche des CNPE du Rhône (Bugey, Saint-Alban, Cruas et Tricastin) et du site en démantèlement de Creys-Malville dans un grand nombre de matrices des compartiments terrestre et aquatique et pour un large spectre de radionucléides. Il s'agit d'identifier les différentes sources, passées ou présentes, à l'origine de la présence de ces radionucléides observés dans l'environnement et d'analyser l'évolution de leurs niveaux d'activité dans les matrices au cours de la dernière décennie.

1 MÉTHODOLOGIE DU SUIVI RADIOÉCOLOGIQUE DE L'ENVIRONNEMENT PROCHE DES CENTRES NUCLÉAIRES DE PRODUCTION D'ÉLECTRICITÉ FRANÇAIS

La stratégie de prélèvements et d'analyses est commune à l'ensemble des sites. Des contraintes supplémentaires peuvent localement modifier la position, le nombre ou les analyses réalisées. Le choix des stations et de la nature des prélèvements permet la comparaison des résultats avec ceux des études antérieures. Les stations de prélèvement ont été définies en fonction du régime éolien local en milieu terrestre et en fonction de l'hydrodynamisme local en milieu aquatique (Annexe 11.1).

Les matrices échantillonnées sont les plus abondantes localement et/ou caractéristiques de l'économie locale (Annexe 11.2 et Annexe 11.5). Elles correspondent également, pour la plupart, aux espèces prélevées lors de la dernière décennie. Les matrices prélevées tiennent également compte de la réglementation applicable à chaque CNPE.

L'ensemble des analyses sont réalisées à fréquence annuelle, ainsi qu'à fréquence trimestrielle pour le ¹⁴C mesuré dans les végétaux terrestres (Annexe 11.3), voire quinquennale pour quelques techniques plus pointues. Dans la plupart des matrices collectées, une analyse gamma, une analyse de tritium organiquement lié voire de tritium libre et une analyse de ¹⁴C sont réalisées (Annexes 11.4, 11.7, 11.8 et 11.10). Dans certaines matrices, des analyses supplémentaires peuvent être réalisées (Annexe 11.4). L'analyse des émetteurs gamma d'origine naturelle permet de caractériser les échantillons prélevés, de vérifier la qualité des prélèvements et des analyses. Les méthodes de prélèvement, de préparation et d'analyses des échantillons mises en œuvre aux fins de la présente étude sont détaillées en annexes (Annexes 11.5 à 11.7).

2 ORIGINE DE LA RADIOACTIVITÉ DANS L'ENVIRONNEMENT DES CNPE DU RHÔNE ET DU SITE EN DÉMANTÈLEMENT DE CREYS-MALVILLE

La présence de radionucléides artificiels dans les milieux terrestre et aquatique autour des CNPE du Rhône et du site en démantèlement de Creys-Malville résulte des retombées atmosphériques globales liées aux essais nucléaires aériens dans l'atmosphère, des rentrées atmosphériques de satellites artificiels, des utilisations médicales de sources radioactives, des peintures luminescentes utilisées dans l'industrie horlogère, des rejets d'effluents des installations nucléaires (figure 1 page 26) ainsi que des retombées atmosphériques des accidents de Tchernobyl et de Fukushima Daiichi.

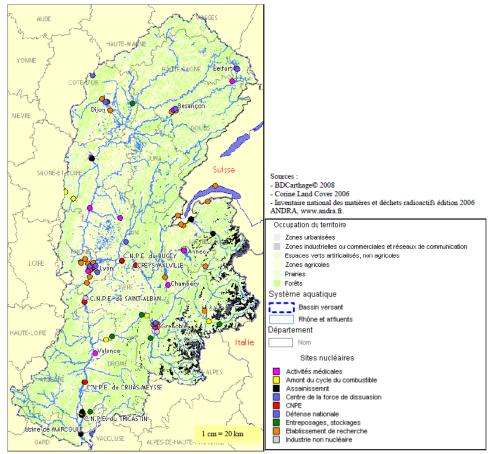


Figure 1 - Localisation des sites détenant des radionucléides dans le bassin versant du Rhône

2.1 Radionucléides d'origine naturelle

Le bruit de fond radiologique naturel a deux origines : les radionucléides telluriques présents depuis la formation de l'univers et le rayonnement cosmique qui produit, de manière permanente, des radionucléides dits cosmogéniques.

2.1.1 <u>Origine tellurique</u>

Les radionucléides d'origine tellurique sont principalement le ⁴⁰K et les produits des chaînes de désintégration de l'²³⁸U, de l'²³⁵U et du ²³²Th. Présents dans l'écorce terrestre, ces radionucléides sont persistants dans les divers compartiments de l'environnement du fait de leur période radioactive de l'ordre de plusieurs milliards d'années. Leurs niveaux d'activité usuels sont indiqués dans le bilan de l'état radiologique de l'environnement français de 2015 à 2017 [1].

2.1.2 Origine cosmogénique et comportement du tritium et du ¹⁴C

Le rayonnement cosmique en provenance du soleil et de l'espace interagit avec la haute atmosphère terrestre et engendre en permanence la production de radionucléides cosmogéniques, comme le tritium (³H), le ¹⁴C, ⁷Be et le ²²Na. Leurs niveaux d'activité usuels sont indiqués dans le bilan de l'état radiologique de l'environnement français de 2015 à 2017 [1].

Le ³H et le ¹⁴C ont également une origine anthropique, qui sera traité plus en détail dans le paragraphe 2.2.

En tant qu'isotope de l'hydrogène, le ³H (période radioactive : 12,312 ans [2]) est intimement lié au cycle de cet élément dans l'environnement. Il peut être présent dans toutes les molécules hydrogénées, être associé aussi bien à l'eau tissulaire qu'à la matière organique des végétaux et des animaux. Sous la forme d'eau tritiée (HTO), ce radionucléide est extrêmement mobile dans l'environnement et dans tous les systèmes biologiques et, de ce fait rapidement intégré dans de nombreux cycles de la géosphère et de la biosphère. En situation d'équilibre, il ne s'accumule pas dans tel ou tel composant environnemental ou biologique. Ainsi, les activités en tritium métabolisé dans la matière organique (tritium organiquement lié, TOL) sont généralement à l'équilibre avec les activités en HTO [3-5]. Avant l'ère nucléaire, les valeurs en ³H atmosphérique étaient de l'ordre de 0,1 à 0,6 Bq.L⁻¹.

S'agissant du ¹⁴C (période radioactive : 5 700 ans [2]), en milieu terrestre, les observations permettent de montrer que l'activité spécifique, exprimée en becquerels de ¹⁴C par kilogramme de carbone total (Bq.kg⁻¹ C), est en équilibre dans les composantes de l'environnement, notamment avec celle du CO₂ atmosphérique. Contrairement au milieu terrestre, le ¹⁴C des écosystèmes d'eau douce n'est pas en équilibre avec le CO₂ atmosphérique du fait de sa dilution notamment par les carbonates des roches sédimentaires anciennes dépourvues de ¹⁴C. L'activité spécifique hors influence industrielle locale peut donc être plus faible et variable en fonction de la teneur en carbonates anciens, entre 180 et 220 Bq.kg⁻¹ C [6].

2.2 Radionucléides d'origine artificielle

2.2.1 Retombées des essais nucléaires aériens et des chutes de satellites

Entre 1945 et 1980, les États-Unis d'Amérique, l'Union Soviétique, la France, la Grande-Bretagne et la Chine ont procédé à plus de 500 essais nucléaires aériens, l'essentiel de la puissance ayant été libéré entre 1954 et 1958, puis en 1961 et 1962 [7]. Les particules radioactives libérées dans la troposphère et la stratosphère au cours de ces essais sont retombées sur l'ensemble du globe, mais en raison de la localisation des sites d'essais, l'hémisphère nord a reçu la majorité des retombées radioactives issues de ces essais. En France métropolitaine, les retombées de ces essais ont été globalement homogènes et constituent la principale source de radioactivité artificielle dans l'environnement.

En termes d'activité, les dépôts les plus importants concernent les radionucléides à vie courte. Ainsi, en France, les dépôts d'¹³¹I, de ⁹⁵Zr, de ¹⁴⁴Ce/Pr et de ¹⁰⁶Ru/Rh (périodes radioactives respectives de 8,0233, 64,032, 285,0 et 371,5 jours [2]), aujourd'hui disparus, ont été 10 fois plus importants que les dépôts de radionucléides à vie moyenne (⁹⁰Sr et ¹³⁷Cs, de

28,80 et 30,05 ans de périodes radioactives respectives [2]). Les dépôts de radionucléides à vie longue (²⁴¹Am¹, ¹⁴C, ²⁴⁰Pu et ²³⁹Pu, de 432,6, 5 700, 6 561 et 24 100 ans de périodes respectives [2]) ont été comparativement très faibles [8]. Le ¹³⁷Cs, le ⁹⁰Sr, le ²³⁸Pu, le ²³⁹, ²⁴⁰Pu et l'²⁴¹Am sont encore détectés aujourd'hui dans de nombreux compartiments. Leurs faibles décroissances radioactives et, pour certains, leurs faibles mobilités dans les sols entretiennent un marquage ne diminuant que lentement depuis le milieu des années 1960 [8]. Dans une moindre mesure, la désintégration de onze satellites artificiels lors de leur entrée dans l'atmosphère, entre 1964 et 1996, a provoqué la dispersion dans l'atmosphère terrestre de ²³⁸Pu, d'²³⁵U et de leurs produits de fission, puis leurs retombées sur l'ensemble de la planète. Pour ces radionucléides, l'activité rémanente des retombées anciennes constitue, dans le cadre de la présente étude, un bruit de fond radiologique dont les valeurs sont présentées dans le bilan de l'état radiologique de l'environnement français de 2015 à 2017 [1] et plus brièvement ci-dessous. En 2018, sur la majeure partie de la France, les activités rémanentes en ¹³⁷Cs des retombées des essais aériens étaient comprises entre 1 400 et 2 000 Bq.m⁻² [9], compte tenu de la seule décroissance radioactive du ¹³⁷Cs. Elles ont été augmentées par les retombées de l'accident de Tchernobyl (voir paragraphe suivant). En comparaison, celles de l'accident de Fukushima-Daiichi sont beaucoup plus faibles (voir paragraphe 2.2.3).

Le ³H a été massivement émis lors des essais nucléaires aériens. De plus de 500 Bq.L⁻¹ dans les eaux de pluie analysées à Thonon-les-Bains ou à Vienne dans les années 1960, l'activité volumique a décru à moins de 10 Bq.L⁻¹ dès la fin des années 1970. Depuis la fin des années 1990, elle est inférieure à 2 Bq.L⁻¹ [10-13] (Figure 2 page 28).

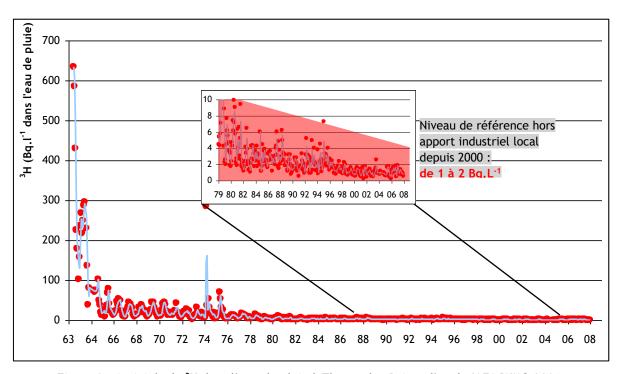


Figure 2 - Activités de ³H dans l'eau de pluie à Thonon-les-Bains, d'après IAEA/WMO 2006.

Les valeurs acquises pour les eaux des cours d'eau français en dehors des zones d'influence des rejets industriels (tête de bassin versant ou hydro-systèmes non nucléarisés) sur la même période ne présentent pas de différence significative par rapport aux niveaux observés dans les eaux de pluie (1,4±0,4 Bq.L⁻¹) [14]. Le tritium produit lors des essais aériens est quantifiable aujourd'hui sous les deux formes, HTO et TOL. En milieu aquatique continental, hors influence industrielle

IRS 🖾

¹ L'241Am n'a pas été produit directement lors des essais mais par la décroissance du 241Pu (T=14,4 ans).

locale, la forme libre (HTO) est à l'équilibre avec les activités atmosphériques actuelles. Le bruit de fond radiologique du tritium libre et organiquement lié en milieu terrestre hors influence d'un rejet est de 1,4±1,2 Bq.L⁻¹ en France métropolitaine (mesures de 2007 à 2012 [15]) pour les matrices annuelles, proche des activités en tritium libre de la vapeur d'eau atmosphérique.

Les essais nucléaires aériens ont également conduit à l'époque à doubler les quantités de ¹⁴C présent dans l'atmosphère. L'activité spécifique atmosphérique en ¹⁴C a atteint plus de 400 Bq.kg-¹ C avant de décroître suite à l'arrêt des essais atmosphériques ainsi qu'à l'augmentation des rejets de CO₂ dans l'atmosphère liée à l'utilisation grandissante de combustibles fossiles, dépourvus de ¹⁴C [16]. En 1999, l'activité spécifique dans le milieu terrestre s'élevait à 255±7 Bq.kg-⁻¹ C [17]. En 2019, elle est proche de 230 Bq.kg-¹ C et se rapproche de l'activité spécifique atmosphérique antérieure aux premiers essais aériens (226,0±1,1 Bq.kg-¹ C) [1] (Figure 3 page 29).

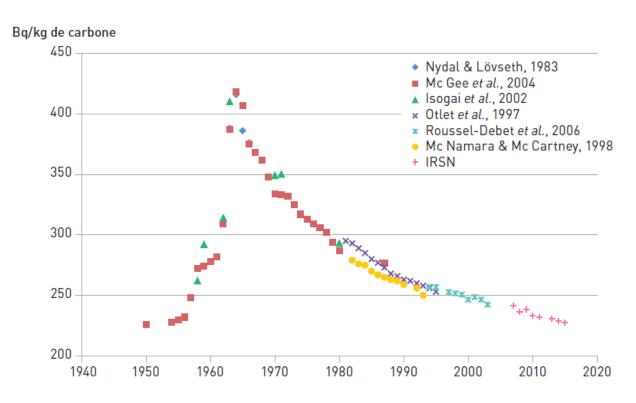


Figure 3 - Évolution de l'activité spécifique du ¹⁴C dans l'hémisphère nord depuis 1950 (tirée de [1]).

Le ¹⁴C des écosystèmes d'eau douce n'est pas en équilibre avec le CO₂ atmosphérique du fait de sa dilution notamment par les carbonates des roches sédimentaires anciennes dépourvues de ¹⁴C. L'activité spécifique hors influence industrielle locale peut donc être plus faible et variable en fonction de la teneur en carbonates anciens, entre 180 et 220 Bq.kg⁻¹ C [6].

De nos jours, les apports industriels en ³H et ¹⁴C, notamment ceux liés aux CNPE, peuvent être identifiés, dans le milieu terrestre, par des activités mesurées un peu plus élevées dans des feuilles d'arbre et de lierre à proximité du CNPE ou dans l'herbe prélevée à la station AS1 et, dans le milieu aquatique, par des activités mesurées plus élevées dans les végétaux aquatiques et les poissons prélevés à l'aval du CNPE, comparativement à l'amont.

2.2.2 <u>Retombées de l'accident de Tchernobyl</u>

Le 26 avril 1986, le réacteur n°4 de la centrale de Tchernobyl (Ukraine), en service depuis 3 ans, explose accidentellement lors de la réalisation d'un essai technique. L'énergie libérée par l'explosion entraîne l'émission dans l'atmosphère de produits de fission et d'activation jusqu'à plus de 1 200 mètres de hauteur. Pendant dix jours, près de 10⁷ TBq sont libérés dans l'environnement, la majorité des radionucléides émis ayant une période radioactive inférieure à un mois. Jusqu'à la mi-mai 1986, la dispersion du panache radioactif dissémine divers radionucléides sur la plupart des pays d'Europe. La dispersion du panache radioactif s'accompagne d'une dilution de l'activité volumique des radionucléides artificiels au sein de celui-ci. Ainsi, l'activité mesurée au sein du panache au voisinage du réacteur accidenté, de l'ordre de 10⁷ Bq/m³, n'était plus que de quelques dizaines de Bq/m³ lorsque le panache a atteint la France métropolitaine durant la première semaine de mai 1986. Les évènements pluvieux concomitants ont favorisé le dépôt des particules. Dix-neuf radionucléides ont été détectés dans les retombées de l'accident de Tchernobyl et sept ont principalement été mis en évidence sur le territoire français (103Ru, 106Ru/Rh, 110mAg, 131I, 132Te, 134Cs et 137Cs). Les retombées atmosphériques de l'accident de Tchernobyl ont affecté l'ensemble du territoire et, plus particulièrement, la moitié est de la France. La figure 4 page 31 présente la répartition des activités surfaciques estimées en 137Cs dans la vallée du Rhône issues de la rémanence de ces retombées. De nos jours, seul le 137Cs est encore mesurable [18].

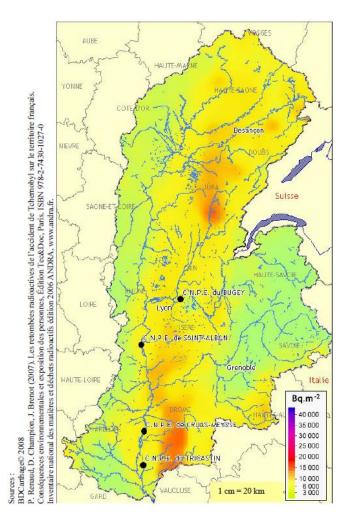


Figure 4 - Activités surfaciques de ¹³⁷Cs estimées en 2010 issues des retombées atmosphériques des essais aériens et de l'accident de Tchernobyl d'après [19].

2.2.3 <u>Retombées de l'accident de Fukushima-Daiichi</u>

Les dépôts issus des retombées atmosphériques de l'accident de Fukushima-Daiichi survenu le 11 mars 2011 ont été de 500 à plus de 1 000 fois inférieurs à ceux mesurés début mai 1986 en France après l'accident de Tchernobyl (Figure 5 page 32). Les résultats des analyses réalisées sur le territoire métropolitain par l'IRSN et les exploitants nucléaires ont montré la présence d'¹³¹l, de ¹³⁷Cs et de ¹³⁴Cs [20]. Du fait de sa courte période radioactive (8,0233 jours [2]), l'¹³¹l a rapidement disparu de l'environnement. Le ¹³⁴Cs, dont le dépôt massif issu des retombées de l'accident de Tchernobyl n'était plus détecté compte tenu de sa courte période radioactive (2,0644 ans [2]), a pu être attribué à cet accident. En revanche, les résultats de ¹³⁷Cs sont difficilement imputables à ce seul évènement compte-tenu de la rémanence de ce radionucléide dans le bassin versant rhodanien.

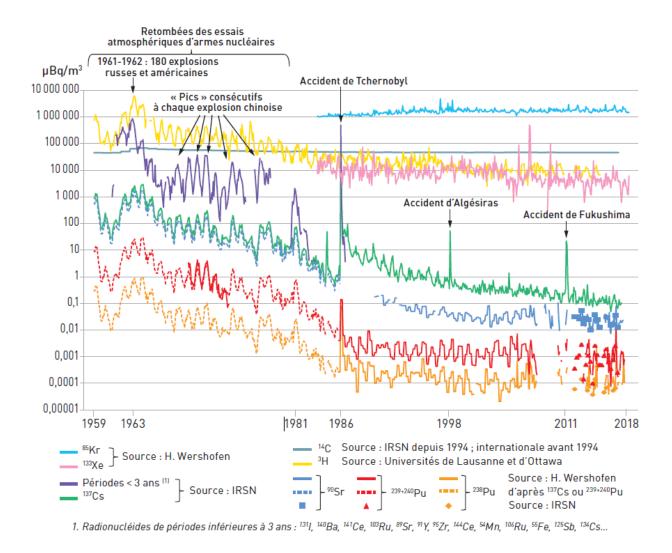


Figure 5 - Évolution des activités des principaux radionucléides artificiels mesurés dans l'air en France et en Allemagne au cours des 60 dernières années (tirée de [1]).

2.2.4 Installations nucléaires exploitées par EDF

L'exploitation d'un réacteur nucléaire implique la génération d'isotopes radioactifs issus de la fission des noyaux du combustible (produits de fission) et de l'activation des différents matériaux, notamment ceux de la structure et de certains composés issus du conditionnement des circuits (produits d'activation). Dans le cadre des décisions de rejets émises par l'ASN, les CNPE sont autorisés à rejeter, en fonctionnement normal, une partie de ces produits de fission et d'activation dans l'environnement par voie liquide et/ou atmosphérique. Ces rejets sont ainsi susceptibles de marquer l'environnement autour des installations nucléaires.

Les rejets d'effluents radioactifs atmosphériques des CNPE comprennent notamment le tritium, le ¹⁴C, l'⁴¹Ar, les xénons métastables 131, 133 et 135, le ⁸⁵Kr, les ¹³¹I et ¹³³I, les ⁵⁸Co et ⁶⁰Co et les ¹³⁴Cs et ¹³⁷Cs. Au sein des rejets d'effluents

radioactifs liquides, le tritium, le ¹⁴C, les ⁵⁸Co et ⁶⁰Co, le ⁶³Ni, les ¹⁴²Sb et ¹²⁵Sb, les ¹³⁴Cs et ¹³⁷Cs, le ⁵⁴Mn, l'^{110m}Ag, le ^{123m}Te, et l'¹³¹I sont prépondérants. Le ⁵⁵Fe et le l'^{108m}Ag sont rejetés dans une moindre mesure.

Les conditions d'exécution et les limites des rejets d'effluents, dans les cours d'eau et dans l'atmosphère, sont définies par l'Autorité de sûreté nucléaire (ASN). L'exploitant a porté à la connaissance de l'IRSN un évènement intéressant l'environnement pour l'année 2019 relatif à la détection de deux dépassements des seuils de rejets atmosphériques en 60Co qui se sont produits la première et la troisième semaine du mois de septembre 2019 sur le CNPE de Bugey. Cet évènement n'a pas eu de conséquence mesurable sur les niveaux d'activité des échantillons analysés dans le cadre de ce suivi.

2.2.5 Autres activités

Le bassin versant du Rhône accueille l'ensemble du cycle du combustible, depuis son enrichissement jusqu'à son utilisation dans les 4 CNPE en fonctionnement. On note également la présence du site de Pierrelatte (enrichissement, etc.) et de Marcoule (production de combustible, recherche sur les déchets radioactifs, etc.) dans la partie sud du fleuve. Le site de Valduc (recherche et production d'armes nucléaires) est localisé sur le bassin versant de la Loire mais ses rejets atmosphériques marquent l'environnement terrestre et aquatique du bassin versant du Rhône.

Outre la filière énergétique, plusieurs unités hospitalières sont également présentes sur le territoire étudié à Lyon, Valence, Annecy, Chambéry et dans d'autres agglomérations du bassin versant de la Saône. Parmi les principaux radionucléides utilisés en médecine nucléaire, le ^{99m}Tc (en diagnostic fonctionnel, période radioactive de 6,01 heures) et l'¹³¹I (en thérapie métabolique, période radioactive de 8,02 jours) représentent à eux seuls près de 99% de la radioactivité utilisée par les services de médecine nucléaire [21]. L'¹³¹I ainsi introduit dans l'environnement via les urines et les selles des patients traités peut être détecté dans les stations d'épuration et en aval des celles-ci. Difficile à détecter dans l'eau, l'¹³¹I peut être mesuré dans les végétaux. On compte également de nombreux centres de recherche utilisant des produits radioactifs, notamment autour des agglomérations lyonnaise et grenobloise. Enfin, dans le Haut-Rhône et le Doubs, les déchets de peintures luminescentes notamment de l'industrie horlogère utilisant du tritium jusque dans les années 1990, ont contribué au marquage encore actuel de l'environnement aquatique. Les autres installations présentées sur la Figure 1 page 26 représentent des sources de radionucléides négligeables par rapport aux apports ci-dessus.

3 CONTEXTE ENVIRONNEMENTAL ET GÉOGRAPHIQUE

3.1 Climatologie

Du nord au sud, les CNPE situés dans la vallée du Rhône présentent des caractéristiques météorologiques diverses, d'abord marquées par une influence continentale (site du Bugey et de Creys-Malville) qui se traduit par des inter-saisons pluvieuses et un hiver plus sec, laissant progressivement place à l'influence méditerranéenne. Celle-ci se caractérise par des pluies d'automne pouvant donner lieu à des cumuls importants de précipitations. Les vents dominants proviennent du nord sur l'ensemble des CNPE rhodaniens avec cependant une prédominance plus nette dans la zone des sites du Tricastin et de Cruas-Meysse.

3.2 Géologie et hydrogéologie

Les CNPE du Rhône sont situés dans la plaine alluviale du fleuve et reposent sur des alluvions quaternaires dont l'épaisseur varie de 2,5 m à environ 10 m suivant les sites. Cette couche est généralement constituée de sédiments sablo-graveleux,

s'affinant vers la surface du fait des dépôts limoneux ou limono-sableux liés aux débordements des eaux lors des crues récentes du fleuve.

Sous les alluvions modernes, on trouve, sur le site du Bugey, un horizon intermédiaire épais de plusieurs dizaines de mètres et constitué d'argile sur la partie supérieure et de galets reliés entre eux par un ciment sableux ou sablo-argileux sur la partie inférieure. Cet horizon recouvre une formation de molasse ayant une centaine de mètres d'épaisseur au niveau du site et constituée de sables, de grès sableux, de lits silteux bruns et de quelques niveaux de grès francs. Au niveau de Saint-Alban, on retrouve des formations pliocènes et miocènes qui recouvrent le socle cristallin avec une épaisseur très variable sur cette zone. À Cruas, en revanche, la stratigraphie est relativement simple car les alluvions récentes recouvrent de puissants bancs calcaires du Jurassique et du Crétacé inférieur qui se développent sur environ 3 500 mètres d'épaisseur. Au niveau du site du Tricastin, les dépôts marneux du Pliocène s'intercalent entre les alluvions quaternaires en surface et les formations marno-calcaires du Crétacé sous-jacentes.

3.3 Hydrographie et hydrologie

Le Rhône est l'un des plus grands fleuves métropolitains français par la taille de son bassin versant (environ 98 000 km²) et par son débit moyen annuel (environ 1 800 m³.s⁻¹ à Beaucaire, en amont immédiat de son delta). Le cours du fleuve (522 km en France) est aujourd'hui largement contraint par les aménagements hydro-électriques qui le jalonnent depuis son entrée en France jusqu'à son débouché en Méditerranée (barrages, seuils, centrales hydroélectriques). Du lac Léman à l'amont du Bugey, seuls le Fier et l'Arve viennent grossir les eaux du Rhône qui présente alors un débit moyen de l'ordre de 450 à 600 m³.s⁻¹. Entre Le Bugey et Saint-Alban, le Rhône est alimenté par les eaux de l'Ain et surtout de la Saône, principal affluent du fleuve. Son débit moyen annuel augmente alors à 1 040 m³.s⁻¹ à Ternay. Plus au sud, entre Saint-Alban-Saint-Maurice-L'Exil et Cruas-Meysse, ce sont la Drôme et l'Isère, situées en rive gauche, qui constituent les affluents principaux du Rhône. À Valence, le débit moyen annuel est d'environ 1 410 m³.s⁻¹. Entre Cruas-Meysse et Le Tricastin, aucun affluent n'alimente le fleuve. Enfin, l'Ardèche se jette dans le Rhône en aval immédiat du CNPE du Tricastin, bientôt rejoint par l'Ouvèze, la Durance et le Gardon. La diversité des bassins-versant drainés et des conditions hydrologiques des affluents qui alimentent le Rhône conduisent à des débits variables à l'échelle intra et interannuelle. Si à l'amont des débits sont relativement plus élevés en été, soutenus par les affluents alpins, vers l'aval les affluents méridionaux contribuent à l'alternance d'étiages marqués en été avec des crues soudaines et parfois intenses d'un point de vue hydrologique et sédimentaire de l'automne au printemps. Ainsi, les débits enregistrés à Beaucaire (dernière station hydrométrique avant l'entrée du fleuve dans son delta) varient de 350 m³.s⁻¹ en étiage à plus de 10 000 m³.s⁻¹ en crue.

5 ÉTAT RADIOÉCOLOGIQUE DU CNPE DU BUGEY

5.1 Généralités et chronologie des études radioécologiques antérieures

Le CNPE du Bugey est situé en rive droite du Rhône, à environ 40 km à l'est de Lyon (Figure 14 page 86). Il est composé d'une tranche de 500 MWe de la filière des réacteurs Uranium Naturel Graphite-Gaz (UNGG) arrêté le 27 mai 1994 ainsi que de quatre tranches de 900 MWe de la filière des réacteurs à Eau Pressurisée (R.E.P.), couplées au réseau en mai 1978, septembre 1978, mars 1979 et juillet 1979. L'installation en déconstruction de Creys-Malville est située à 34 km à l'amont du CNPE du Bugey sur le Rhône. Sur la frontière franco-suisse sont implantées les installations du CERN dont le grand collisionneur de hadrons. Des services de médecine nucléaire, utilisant de l'¹³¹I, sont situés en amont du Bugey, à Annecy, Chambéry et Genève.

Les conditions d'exécution et les limites des rejets d'effluents, dans le cours d'eau et dans l'atmosphère, sont définies par l'ASN. L'exploitant a déclaré, le 1^{er} octobre 2019, un évènement significatif relatif à la détection de ⁶⁰Co lors de la première et la troisième semaine du mois de septembre 2019, au niveau d'un émissaire pour lequel ce rejet n'est pas autorisé. L'exploitant a indiqué que l'activité radiologique rejetée était restée très faible et que les appareils de surveillance de l'environnement implantés sur et autour du site n'avaient détecté aucune élévation de la radioactivité. L'IRSN souligne que des échantillons de maïs ont été prélevés le 10 septembre 2019 en zone influencée et non influencée. Les mesures de spectrométrie gamma réalisées sur ces échantillons ne mettent pas en évidence de marquage en ⁶⁰Co lié à cet évènement.

La dispersion des rejets des effluents dans l'environnement est contrainte par les conditions météorologiques (des vents nord/nord-nord-ouest dominants et sud/sud-est secondaires, cf. page 86).

La chronologie des études radioécologiques conduites dans l'environnement du CNPE du Bugey est présentée sur la figure 13 page 80.

IRS [1] Rapport IRSN/2021-00434 Page: 79/284

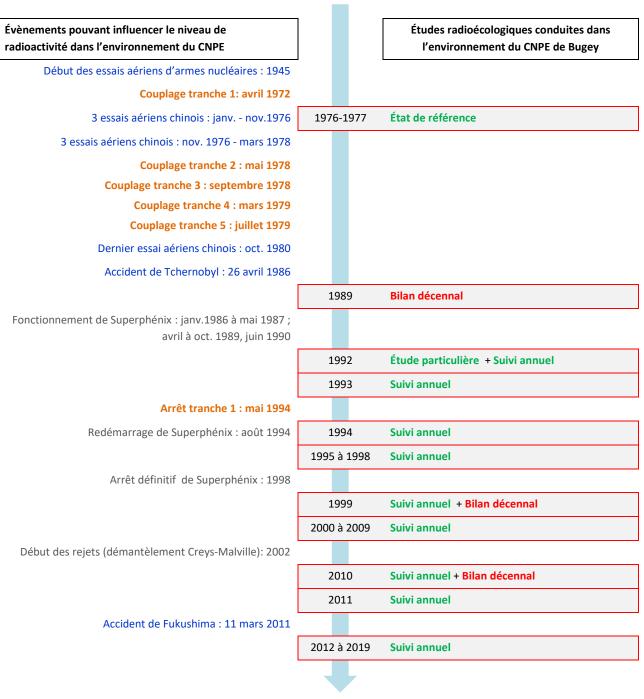


Figure 13 - Chronologie des études radioécologiques conduites dans l'environnement du CNPE du Bugey.

5.2 État radiologique de l'environnement terrestre

5.2.1 <u>Stratégie d'échantillonnage</u>

La localisation des stations de prélèvement et la nature des échantillons collectés sont présentées à la Figure 14 page 86. Les caractéristiques (dates, stations, natures, etc.) identifiant chaque échantillon analysé sont présentées dans le tableau 28 page 82 et suivantes. La granulométrie et la teneur en matière organique du sol de prairie analysé sont présentées dans le tableau 41 page 114.

Pour l'essentiel, la stratégie de prélèvement et d'analyse est commune à l'ensemble des sites (Annexes). Le choix des stations et de la nature des prélèvements permet la comparaison des résultats avec ceux des études antérieures. Les sols échantillonnés sont des sols non cultivés sur lesquels les cultures, pluriannuelles, ne demandent aucun remaniement (pâturages). Ce type de sol est privilégié dans l'objectif de mesurer l'accumulation potentielle des dépôts atmosphériques sur plusieurs années. Les échantillons sont, en dehors des indicateurs végétaux (mousses terricoles et herbe), des vecteurs directs ou indirects de radioactivité vers l'homme : le lait et des légumes-feuilles comme les salades. Les végétaux cultivés (salade et herbe) sont communs sur l'ensemble du territoire français. Leur cycle végétatif annuel et leur grande surface d'interception en font d'assez bons bioindicateurs pour le suivi des niveaux de radioactivité de l'environnement et caractériser d'éventuels marquages. Du lait de vache est collecté, dans la mesure du possible, sur une commune à proximité du site. Dans la stratégie générale, une mousse terricole, une production agricole, un sol de prairie, de l'herbe et un lait sont prélevés sous les vents dominants (ZI). Hors vents dominants (ZNI), une mousse, un sol de prairie, de l'herbe et plusieurs productions agricoles sont collectés.

Des contraintes supplémentaires peuvent localement modifier la position, le nombre ou les analyses réalisées. Dans la stratégie 2019, une mousse terricole, trois productions agricoles (deux céréales et un légume-feuille), un sol de prairie, de l'herbe et un lait sont prélevés sous les vents dominants, au sud de l'installation (Vernas, Leyrieu et Loyettes carrières). Les maïs prélevés à Loyettes-Les Brotteaux, à l'ouest du CNPE, sont potentiellement influencés via l'eau d'irrigation prélevée dans le Rhône par les rejets d'effluents liquides du CNPE. Hors vents, une production agricole (une céréale) et le sol de prairie sont collectés respectivement à Chazey-sur-Ain et à Bressoles. Les maïs prélevés à Chazey-sur-Ain sont irrigués par l'eau provenant d'un captage localisé à Proulieu, en amont du dispositif de rejet liquide du CNPE.

Les mousses, les salades, l'herbe, le lait et le sol prélevés sous les vents dominants ont fait l'objet d'une mesure par spectrométrie gamma. L'¹³¹l a été recherché spécifiquement dans les mousses terricoles. Les maïs récoltés sous et hors vents dominants ont fait l'objet d'une mesure par spectrométrie gamma ainsi que d'une mesure de tritium libre, tritium organiquement lié et ¹⁴C. Dans le lait, l'herbe et les salades collectés sous les vents, du tritium libre et du tritium organiquement lié ont été recherchés. Du ¹⁴C est également recherché dans le lait et les salades prélevées sous les vents. Du ⁹⁰Sr a été mesuré dans le sol de prairie collecté sous les vents dominants. La mesure de ⁵⁵Fe n'a pas pu être réalisée dans le sol de prairie prélevé sous les vents dominants car la concentration en fer stable était trop élevée (supérieure à 80 mg par prise d'essai). Les sols de prairie sous et hors vents dominants ont fait l'objet d'une spectrométrie alpha.

Tableau 28 - Identification des échantillons analysés dans l'environnement terrestre du CNPE du Bugey lors du suivi radioécologique de 2019.

Situation par rapport au C.N.P.E.	Chronique	Station	Longitude WGS 84	Latitude WGS 84	Nature	Espèce	Fraction	Date de prélèvement	Type de mesure	Frais/Sec	Sec/Cendres
4,76 km SSO	Secteur Sud Bugey	Leyrieu	05,25510	45,75832	Aliments liq. Non transformés	Lait de vache	entier	07/05/2019	Gamma (Cendre)	8,38	15,53
4,76 km SSO	Secteur Sud Bugey	Leyrieu	05,25510	45,75832	Aliments liq. Non transformés	Lait de vache	entier/eaulyo	07/05/2019	H-3 libre (Liquide)	8,15	
4,76 km SSO	Secteur Sud Bugey	Leyrieu	05,25510	45,75832	Aliments liq. Non transformés	Lait de vache	entier/reslyo	07/05/2019	C élémentaire (Sec)	8,15	
4,76 km SSO	Secteur Sud Bugey	Leyrieu	05,25510	45,75832	Aliments liq. Non transformés	Lait de vache	entier/reslyo	07/05/2019	H-3 lié (Sec)	8,15	
4,76 km SSO	Secteur Sud Bugey	Leyrieu	05,25510	45,75832	Aliments liq. Non transformés	Lait de vache	entier/reslyo	07/05/2019	C-14 par SL (Benzène) (Sec)	8,15	
4,76 km SSO	Secteur Sud Bugey	Leyrieu	05,25510	45,75832	Aliments liq. Non transformés	Lait de vache	entier/reslyo	07/05/2019	CTOT (Sec)	8,15	
4,76 km SSO	Secteur Sud Bugey	Leyrieu	05,25510	45,75832	Aliments liq. Non transformés	Lait de vache	entier/reslyo	07/05/2019	Pourcentage massique de l'hydrogène (Sec)	8,15	
2,37 km SSO	Zone influencée proche (< 5 km)	Vernas	05,26188	45,77933	Herbes	Herbe de prairie permanente	entier/eaulyo	07/05/2019	H-3 libre (Liquide)	5,19	-
2,37 km SSO	Zone influencée proche (< 5 km)	Vernas	05,26188	45,77933	Herbes	Herbe de prairie permanente	entier/reslyo	07/05/2019	Pourcentage massique de l'hydrogène (Sec)	5,19	
2,37 km SSO	Zone influencée proche (< 5 km)	Vernas	05,26188	45,77933	Herbes	Herbe de prairie permanente	entier/reslyo	07/05/2019	H-3 lié (Sec)	5,19	
2,37 km SSO	Zone influencée proche (< 5 km)	Vernas	05,26188	45,77933	Herbes	Herbe de prairie permanente	Parties aériennes	07/05/2019	Gamma (Cendre)	5,18	9,87
2,42 km SSO	Zone influencée proche (< 5 km)	Vernas	05,26135	45,77898	Sols non cultivés	Sol de pâturage ou de prairie	entier	11/03/2019	Granulométrie (Sec)	1,23	
2,42 km SSO	Zone influencée proche (< 5 km)	Vernas	05,26135	45,77898	Sols non cultivés	Sol de pâturage ou de prairie	entier	11/03/2019	MO après combustion (en cours) (Sec)	1,23	
2,42 km SSO	Zone influencée proche (< 5 km)	Vernas	05,26135	45,77898	Sols non cultivés	Sol de pâturage ou de prairie	Produits de tamisage (retenu sur tamis)	11/03/2019	Gamma (Sec)	1,23	
2,42 km SSO	Zone influencée	Vernas	05,26135	45,77898	Sols non cultivés	Sol de pâturage ou de prairie	Produits de	11/03/2019	Pu, Am par Sp. Alpha (Pu-238,	1,23	1,07

Situation par rapport au C.N.P.E.	Chronique	Station	Longitude WGS 84	Latitude WGS 84	Nature	Espèce	Fraction	Date de prélèvement	Type de mesure	Frais/Sec	Sec/Cendres
	proche (< 5 km)						tamisage (retenu sur tamis)		239+240, Am-241) (Cendre)		
2,42 km SSO	Zone influencée proche (< 5 km)	Vernas	05,26135	45,77898	Sols non cultivés	Sol de pâturage ou de prairie	Produits de tamisage (retenu sur tamis)	11/03/2019	Sr-90 par compt. Prop. (en cours) (Cendre)	1,23	1,07
2,42 km SSO	Zone influencée proche (< 5 km)	Vernas	05,26135	45,77898	Sols non cultivés	Sol de pâturage ou de prairie	Produits de tamisage (retenu sur tamis)	11/03/2019	Stables par ICP-AES CREALINS (Cendre)	1,23	1,07
2,58 km OSO	Zone influencée proche (< 5 km)	Loyettes	05,24433	45,78561	Céréales	Maïs Zea mays	entier/eaulyo	10/09/2019	H-3 libre (Liquide)	1,54	
2,58 km OSO	Zone influencée proche (< 5 km)	Loyettes	05,24433	45,78561	Céréales	Maïs Zea mays	entier/reslyo	10/09/2019	C-14 par SL (Benzène) (Sec)	1,54	
2,58 km OSO	Zone influencée proche (< 5 km)	Loyettes	05,24433	45,78561	Céréales	Maïs Zea mays	entier/reslyo	10/09/2019	H-3 lié (Sec)	1,54	
2,58 km OSO	Zone influencée proche (< 5 km)	Loyettes	05,24433	45,78561	Céréales	Maïs Zea mays	entier/reslyo	10/09/2019	CTOT (Sec)	1,54	
2,58 km OSO	Zone influencée proche (< 5 km)	Loyettes	05,24433	45,78561	Céréales	Maïs Zea mays	entier/reslyo	10/09/2019	C élémentaire (Sec)	1,54	
2,58 km OSO	Zone influencée proche (< 5 km)	Loyettes	05,24433	45,78561	Céréales	Maïs Zea mays	entier/reslyo	10/09/2019	Pourcentage massique de l'hydrogène (Sec)	1,54	
2,58 km OSO	Zone influencée proche (< 5 km)	Loyettes	05,24433	45,78561	Céréales	Maïs Zea mays	Graine	10/09/2019	Gamma (Cendre)	1,31	80,99
4,68 km S	Zone influencée proche (< 5 km)	Leyrieu	05,26883	45,75762	Mousses terricoles	Rhytidiadelphus triquetrus Rhytidiadelphus triquetrus	Parties aériennes	12/03/2019	Gamma (Frais)+l-131	-	
4,75 km S	Zone influencée proche (< 5 km)	Leyrieu	05,26356	45,75727	Légumes	Laitue, batavia, romaines Lactuca sativa L.	entier/eaulyo	03/07/2019	H-3 libre (Liquide)	21,00	
4,75 km S	Zone influencée proche (< 5 km)	Leyrieu	05,26356	45,75727	Légumes	Laitue, batavia, romaines Lactuca sativa L.	entier/reslyo	03/07/2019	H-3 lié (Sec)	21,00	
4,75 km S	Zone influencée proche (< 5 km)	Leyrieu	05,26356	45,75727	Légumes	Laitue, batavia, romaines Lactuca sativa L.	entier/reslyo	03/07/2019	Pourcentage massique de l'hydrogène (Sec)	21,00	
4,75 km S	Zone influencée proche (< 5 km)	Leyrieu	05,26356	45,75727	Légumes	Laitue, batavia, romaines Lactuca sativa L.	entier/reslyo	03/07/2019	CTOT (Sec)	21,00	
4,75 km S	Zone influencée proche (< 5 km)	Leyrieu	05,26356	45,75727	Légumes	Laitue, batavia, romaines Lactuca sativa L.	entier/reslyo	03/07/2019	C élémentaire (Sec)	21,00	•

 IRS□
 Rapport IRSN/2021-00434
 Page: 83/284

Situation par rapport au C.N.P.E.	Chronique	Station	Longitude WGS 84	Latitude WGS 84	Nature	Espèce	Fraction	Date de prélèvement	Type de mesure	Frais/Sec	Sec/Cendres
4,75 km S	Zone influencée proche (< 5 km)	Leyrieu	05,26356	45,75727	Légumes	Laitue, batavia, romaines Lactuca sativa L.	entier/reslyo	03/07/2019	C-14 par SL (Benzène) (Sec)	21,00	
4,75 km S	Zone influencée proche (< 5 km)	Leyrieu	05,26356	45,75727	Légumes	Laitue, batavia, romaines Lactuca sativa L.	Feuilles annuelles	03/07/2019	Gamma (Cendre)	23,78	3,40
10,16 km N	Zone non influencée	Chazey- sur-Ain	05,26211	45,89086	Céréales	Maïs Zea mays	entier/eaulyo	10/09/2019	H-3 libre (Liquide)	1,46	-
10,16 km N	Zone non influencée	Chazey- sur-Ain	05,26211	45,89086	Céréales	Maïs Zea mays	entier/reslyo	10/09/2019	Pourcentage massique de l'hydrogène (Sec)	1,46	-
10,16 km N	Zone non influencée	Chazey- sur-Ain	05,26211	45,89086	Céréales	Maïs Zea mays	entier/reslyo	10/09/2019	C-14 par MS (spectrométrie de masse) (Sec)	1,46	-
10,16 km N	Zone non influencée	Chazey- sur-Ain	05,26211	45,89086	Céréales	Maïs Zea mays	entier/reslyo	10/09/2019	C élémentaire (Sec)	1,46	
10,16 km N	Zone non influencée	Chazey- sur-Ain	05,26211	45,89086	Céréales	Maïs Zea mays	entier/reslyo	10/09/2019	CTOT (Sec)	1,46	
10,16 km N	Zone non influencée	Chazey- sur-Ain	05,26211	45,89086	Céréales	Maïs Zea mays	entier/reslyo	10/09/2019	H-3 lié (Sec)	1,46	
10,16 km N	Zone non influencée	Chazey- sur-Ain	05,26211	45,89086	Céréales	Maïs Zea mays	Graine	10/09/2019	Gamma (Cendre)	1,23	78,67
16,41 km ONO	Zone non influencée	Bressolles	05,09321	45,88022	Sols non cultivés	Sol de pâturage ou de prairie	Produits de tamisage (retenu sur tamis)	12/03/2019	Pu, Am par Sp. Alpha (Pu-238, 239+240, Am-241) (Cendre)	1,37	1,08
5,61 km O	Zone sous les vents à plus 5 km	Loyettes	05,19965	45,79063	Céréales	Maïs Zea mays	entier/eaulyo	10/09/2019	H-3 libre (Liquide)	1,57	
5,61 km O	Zone sous les vents à plus 5 km	Loyettes	05,19965	45,79063	Céréales	Maïs Zea mays	entier/reslyo	10/09/2019	C-14 par SL (Benzène) (Sec)	1,57	-
5,61 km O	Zone sous les vents à plus 5 km	Loyettes	05,19965	45,79063	Céréales	Maïs Zea mays	entier/reslyo	10/09/2019	Pourcentage massique de l'hydrogène (Sec)	1,57	-
5,61 km O	Zone sous les vents à plus 5 km	Loyettes	05,19965	45,79063	Céréales	Maïs Zea mays	entier/reslyo	10/09/2019	H-3 lié (Sec)	1,57	-
5,61 km O	Zone sous les vents à plus 5 km	Loyettes	05,19965	45,79063	Céréales	Maïs Zea mays	entier/reslyo	10/09/2019	C élémentaire (Sec)	1,57	
5,61 km O	Zone sous les vents à plus 5 km	Loyettes	05,19965	45,79063	Céréales	Maïs Zea mays	entier/reslyo	10/09/2019	CTOT (Sec)	1,57	-

IRS Rapport IRSN/2021-00434 Page: 84/284

ra	uation par pport au N.P.E.	Chronique	Station	Longitude WGS 84	Latitude WGS 84	Nature	Espèce	Fraction	Date de prélèvement	Type de mesure	Frais/Sec	Sec/Cendres	
5,	61 km O	Zone sous les vents à plus 5 km	Loyettes	05,19965	45,79063	Céréales	Maïs Zea mays	Graine	10/09/2019	Gamma (Cendre)	1,39	79,14	
	- : absence de traitement.												
	Eaulyo: eau extraite par lyophilisation					Prélèvements	hors vents dominants de	l'installation					
	Reslyo: résidu sec après lyophilisation.					Prélèvements sous les vents dominants de l'installation							
	Dans les tableaux terrestres suivants :					Prélèvements sous les vents dominants de l'installation et irrigués par les eaux du Rhône collectées en aval des rejets liquides du CNPE							

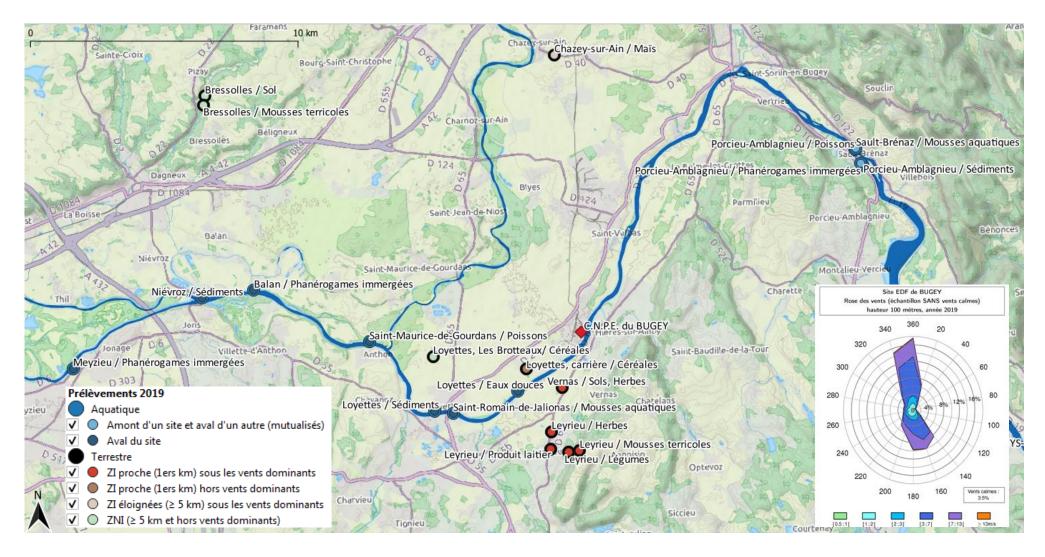


Figure 14 - Localisation générale des stations de prélèvement dans le milieu terrestre et dans le milieu aquatique pour le suivi radioécologique annuel du CNPE du Bugey.

5.2.2 <u>Résultats et interprétation</u>

5.2.2.1 Radionucléides émetteurs gamma

5.2.2.1.1 Radionucléides émetteurs gamma d'origine naturelle

Les résultats d'analyse par spectrométrie γ des activités en radionucléides d'origine naturelle dans l'environnement terrestre du CNPE du Bugey sont présentés dans le tableau 42 page 115.

En 2019, les activités détectées dans les matrices terrestres prélevées autour du CNPE du Bugey sont proches des valeurs habituelles pour ces matrices [1]. La radioactivité d'origine naturelle présente une composante tellurique prépondérante dans les sols et les végétaux. Elle est principalement due au ⁴⁰K et, dans une moindre mesure, par les radionucléides des familles du ²³²Th et de l'²³⁸U. Dans les sols, les activités massiques en ⁴⁰K et en descendants du ²³²Th et du ²³⁸U sont en accord avec les valeurs observées en France métropolitaine [22, 23, 1]. La seconde composante, d'origine cosmogénique, est due au ⁷Be présent principalement dans les végétaux dont la surface foliaire est propice à la captation des retombées atmosphériques. Dans le lait de vache, le ⁴⁰K est toujours proche de 50 Bq.L⁻¹, quels que soient l'année ou le lieu du prélèvement. Ces résultats de mesure attestent de l'absence de biais dans les étapes de prélèvements, de préparation et de mesure des échantillons.

5.2.2.1.2 Radionucléides émetteurs gamma d'origine artificielle

Les résultats d'analyse par spectrométrie γ des activités en radionucléides d'origine artificielle dans l'environnement terrestre du CNPE du Bugey sont présentés dans le tableau 43 page 116.

Le ¹³⁷Cs est quantifié dans toutes les matrices prélevées excepté un échantillon d'herbe prélevé à Vernas. En 2019, les activités en ¹³⁷Cs détectées dans l'environnement terrestre du CNPE du Bugey sont dans la gamme des niveaux observés au cours des dix dernières années (Figure 15 page 88 et tableau 30 page 103 à tableau 35 page 108). Les activités des autres émetteurs y d'origine artificielle ne sont pas quantifiées dans les matrices prélevées.

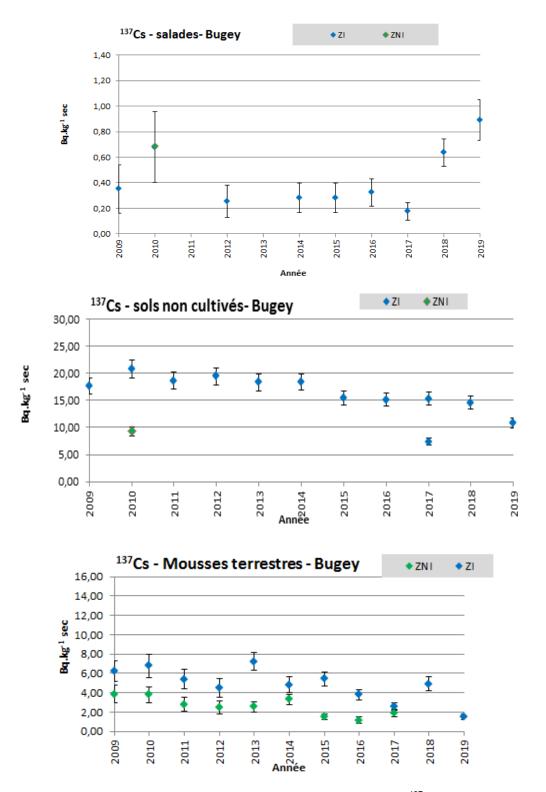


Figure 15 - Variation temporelle des activités (valeurs minimales à maximales) du 137 Cs détectés par spectrométrie γ dans les échantillons de sols non cultivés, de salades et mousses collectés dans l'environnement terrestre du CNPE du Bugey de 2009 à 2019.

5.2.2.2 Radionucléides émetteurs bêta

5.2.2.2.1 Tritium

Les résultats d'analyse des activités en tritium libre et en tritium organiquement lié dans l'environnement terrestre du CNPE du Bugey sont présentés respectivement dans le tableau 44 page 117 et le tableau 45 page 118.

Les activités en tritium sont proches du bruit de fond attendu en milieu terrestre hors influence d'un apport industriel local (1 à 3 Bq.L⁻¹ d'après [1]) à l'exception d'un échantillon de maïs prélevé à Loyettes carrière pour lequel les activités en tritium libre et tritium organiquement lié (respectivement 11,3±1,0 Bq.L⁻¹ d'eau de dessiccation et 9,50±0,90 Bq.L⁻¹ d'eau de combustion) sont plus élevées que le bruit de fond (

Figure 16 page 90). Pour autant, ces activités ne sont pas dues aux rejets atmosphériques du CNPE, mais à ses rejets liquides. En effet, le maïs prélevé à Loyettes carrière est irrigué par les eaux du Rhône collectées en aval des rejets d'effluents liquides du CNPE. L'activité en tritium organiquement lié mesurée dans le lait collecté à Leyrieu présente une activité (3,90±0,70 Bq.L-1 d'eau de combustion) supérieure au bruit de fond liée à l'influence des rejets d'effluents atmosphériques du CNPE du Bugey.

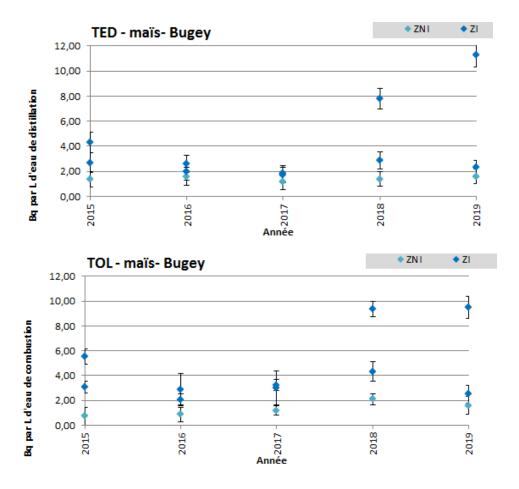


Figure 16 - Variation temporelle des activités (valeurs minimales à maximales) du tritium de l'eau de déshydratation (TED) et du tritium organiquement lié (TOL) détectés dans les échantillons de maïs collectés dans l'environnement terrestre du CNPE du Bugey de 2015 à 2019.

5.2.2.2. Carbone 14

Les résultats d'analyse des activités en ¹⁴C dans l'environnement terrestre du CNPE du Bugey sont présentés dans le tableau 46 page 119.

Les activités en ¹⁴C mesurées dans les salades, le maïs et le lait prélevés en 2019 et dans l'herbe collectée en 2018 à Leyrieu sont proches du bruit de fond attendu hors influence d'un apport industriel local (proche de 230 Bq.kg⁻¹ C d'après [1]). Les activités en ¹⁴C mesurées dans les maïs prélevés en zone influencée et en zone non influencée sont du même ordre de grandeur.

5.2.2.3 Strontium 90

Le résultat d'analyse de l'activité en ⁹⁰Sr dans l'environnement terrestre du CNPE du Bugey est présenté dans le tableau 48 page 120.

L'activité en ⁹⁰Sr mesurée dans les sols non cultivés est inférieure à la valeur attendue hors influence d'un apport industriel local (valeur moyenne de 3 Bq.kg⁻¹ sec d'après [1]).

5.2.2.3 Radionucléides émetteurs alpha

Les résultats d'analyse des activités en ²³⁸Pu, ²³⁹⁺²⁴⁰Pu et ²⁴¹Am dans l'environnement terrestre du CNPE du Bugey sont présentés dans tableau 47 page 120. Les activités en ²³⁹⁺²⁴⁰Pu mesurées dans les sols non cultivés sont proches du bruit de fond attendu hors influence d'un apport industriel local (valeur moyenne de 0,4 Bq.kg⁻¹ sec d'après [1]). Les rapports d'activité ²³⁸Pu/²³⁹⁺²⁴⁰Pu et ²⁴¹Am/²³⁹⁺²⁴⁰Pu des échantillons de sols non cultivés sont caractéristiques de la signature des retombées des essais nucléaires aériens, voisine de 0,028±0,002 pour ²³⁸Pu/²³⁹⁺²⁴⁰Pu et de 0,436±0,036 pour ²⁴¹Am/²³⁹⁺²⁴⁰Pu d'après [24, 25].

5.3 État radiologique de l'environnement aquatique

5.3.1 Stratégie d'échantillonnage

La localisation des stations de prélèvement et la nature des échantillons collectés sont indiquées à la figure 13 page 80. Les caractéristiques (dates, stations, natures, etc.) identifiant chaque échantillon sont répertoriées dans le tableau 29 page 93 et suivantes. La teneur en matière organique et la granulométrie des sédiments sont présentées dans le tableau 49 page 121.

Les stations de prélèvement et la nature des échantillons permettent la comparaison des résultats avec ceux des études antérieures. Les stations de référence, en amont du site, sont localisées à Sault-Brenaz et Porcieu-Amblagnieu. La zone de mélange complet est éloignée du site au niveau de la confluence avec la rivière d'Ain. Aussi, depuis les premières études, la station en aval immédiat est placée avant la zone de mélange complet, à Loyettes. Cette station est néanmoins peu propice aux prélèvements (peu de poissons et de phanérogames). Les stations en aval (Saint-Maurice-de-Gourdans, Niévroz, Balan et Meyzieu) sont dans la zone de mélange complet, mais sont aussi dans la zone de dilution du Rhône par l'Ain.

Les pêches ont été réalisées par un pêcheur professionnel. Les mesures de radioactivité ont été réalisées sur les muscles des poissons afin d'étudier la fraction susceptible d'être consommée par l'homme et de s'affranchir du contenu du tractus gastro-intestinal. Des échantillons homogènes de poissons ont été constitués pour réaliser l'ensemble des analyses prévues. Les analyses ont été réalisées sur des hotus et des chevesnes de taille moyenne et d'âge supérieur à 10 ans.

L'eau de boisson est collectée à Chavanoz, car cette eau est potentiellement influencée par les rejets d'effluents liquides du site. Elle provient essentiellement de la nappe d'Anthon, alimentée par l'eau du Rhône, en aval du dispositif de rejet liquide du site.

L'eau d'irrigation est prélevée à Loyettes et provient de l'eau du Rhône. Cette eau est potentiellement influencée par les rejets liquides du site.

Les échantillons prélevés ont été mesurés par spectrométrie γ excepté les mousses. L'¹³¹I, le ¹⁴C, le tritium libre et le tritium organiquement lié ont été recherchés dans les phanérogames immergées. Le tritium libre, le tritium

organiquement lié ainsi que d'irrigation. Le ⁶³ Ni et le ⁵⁵ Fe		n libre est mesuré dan	ns l'eau de boisson et l'ea

Tableau 29 - Identification des échantillons analysés dans l'environnement aquatique du CNPE du Bugey lors du suivi radioécologique de 2019.

Situation par rapport au C.N.P.E.	Chronique	Station	Longitude WGS 84	Latitude WGS 84	Nature	Espèce	Fraction	Date de prélèvement	Type de mesure	Frais/Sec	Sec/Cendres
3,39 km		Loyettes	05,23979	45,77818	Eaux douces	Eau de cours d'eau	entier/pdtfiltr	03/07/2019	H-3 libre (Liquide)	-	-
8,5 km OSO		Chavanoz	05,16881	45,77177	Eaux boisson	Eau d'adduction publique	entier/pdtfiltr	03/07/2019	H-3 libre (Liquide)	-	-
5,77 km		Saint-Romain-de- Jalionas	05,20856	45,77124	Mousses aquatiques	Fontinale Fontinalis antipyretica Hedw.	Parties aériennes	10/09/2019	Fe-55 par SL (Cendre)	6,43	4,69
5,77 km		Saint-Romain-de- Jalionas	05,20856	45,77124	Mousses aquatiques	Fontinale Fontinalis antipyretica Hedw.	Parties aériennes	10/09/2019	Ni-63 par Sc. Liq. (cendres) (Cendre)	6,43	4,69
12,19 km		Porcieu-Amblagnieu	05,40569	45,85605	Poissons	Hotu Chondrostoma nasus	entier/eaulyo	06/05/2019	H-3 libre (Liquide)	4,51	-
12,19 km		Porcieu-Amblagnieu	05,40569	45,85605	Poissons	Hotu Chondrostoma nasus	entier/reslyo	06/05/2019	C-14 par SL (Benzène) (Sec)	4,51	-
12,19 km		Porcieu-Amblagnieu	05,40569	45,85605	Poissons	Hotu Chondrostoma nasus	entier/reslyo	06/05/2019	C élémentaire (Sec)	4,51	-
12,19 km		Porcieu-Amblagnieu	05,40569	45,85605	Poissons	Hotu Chondrostoma nasus	entier/reslyo	06/05/2019	CTOT (Sec)	4,51	-
12,19 km		Porcieu-Amblagnieu	05,40569	45,85605	Poissons	Hotu Chondrostoma nasus	entier/reslyo	06/05/2019	H-3 lié (Sec)	4,51	-
12,19 km		Porcieu-Amblagnieu	05,40569	45,85605	Poissons	Hotu Chondrostoma nasus	entier/reslyo	06/05/2019	Pourcentage massique de l'hydrogène (Sec)	4,51	-
12,19 km		Porcieu-Amblagnieu	05,40569	45,85605	Poissons	Hotu Chondrostoma nasus	Muscle	06/05/2019	Gamma (Cendre)	4,12	20,72
12,24 km		Sault-Brénaz	05,40617	45,85643	Mousses aquatiques	Cinclidotus fontinale Cinclidotus fontinaloides (Hedw.) P.Beauv.	Parties aériennes	10/09/2019	Fe-55 par SL (Cendre)	4,24	6,44
12,24 km		Sault-Brénaz	05,40617	45,85643	Mousses aquatiques	Cinclidotus fontinale Cinclidotus fontinaloides (Hedw.) P.Beauv.	Parties aériennes	10/09/2019	Ni-63 par Sc. Liq. (cendres) (Cendre)	4,24	6,44
12,15 km amont	Rhône en amont du Bugey	Porcieu-Amblagnieu	05,40937	45,85074	Sédiments	Sédiments de milieu dulçaquicole	entier	11/03/2019	Granulométrie (Sec)	1,73	-

IRS Rapport IRSN/2021-00434 Page: 93/284

Situation par rapport au C.N.P.E.	Chronique	Station	Longitude WGS 84	Latitude WGS 84	Nature	Espèce	Fraction	Date de prélèvement	Type de mesure	Frais/Sec	Sec/Cendres
12,15 km amont	Rhône en amont du Bugey	Porcieu-Amblagnieu	05,40937	45,85074	Sédiments	Sédiments de milieu dulçaquicole	entier	11/03/2019	MO après combustion (en cours) (Sec)	1,73	-
12,15 km amont	Rhône en amont du Bugey	Porcieu-Amblagnieu	05,40937	45,85074	Sédiments	Sédiments de milieu dulçaquicole	Produits de tamisage (retenu sur tamis)	11/03/2019	Fe-55 par SL (Cendre)	1,73	1,04
12,15 km amont	Rhône en amont du Bugey	Porcieu-Amblagnieu	05,40937	45,85074	Sédiments	Sédiments de milieu dulçaquicole	Produits de tamisage (retenu sur tamis)	11/03/2019	Gamma (Sec)	1,73	-
12,15 km amont	Rhône en amont du Bugey	Porcieu-Amblagnieu	05,40937	45,85074	Sédiments	Sédiments de milieu dulçaquicole	Produits de tamisage (retenu sur tamis)	11/03/2019	Ni-63 par Sc. Liq. (cendres) (Cendre)	1,73	1,04
12,15 km amont	Rhône en amont du Bugey	Porcieu-Amblagnieu	05,40937	45,85074	Sédiments	Sédiments de milieu dulçaquicole	Produits de tamisage (retenu sur tamis)	11/03/2019	Pourcentage massique de l'hydrogène (Sec)	1,73	-
11,33 km aval	Rhône en aval de Creys	Porcieu-Amblagnieu	05,40835	45,85132	Phanérogames immergées	Myriophylle Myriophyllum spicatum L.	entier/eaulyo	10/09/2019	H-3 libre (Liquide)	9,91	-
11,33 km aval	Rhône en aval de Creys	Porcieu-Amblagnieu	05,40835	45,85132	Phanérogames immergées	Myriophylle Myriophyllum spicatum L.	entier/reslyo	10/09/2019	C-14 par MS (spectrométrie de masse) (Sec)	9,91	-
11,33 km aval	Rhône en aval de Creys	Porcieu-Amblagnieu	05,40835	45,85132	Phanérogames immergées	Myriophylle Myriophyllum spicatum L.	entier/reslyo	10/09/2019	C élémentaire (Sec)	9,91	-
11,33 km aval	Rhône en aval de Creys	Porcieu-Amblagnieu	05,40835	45,85132	Phanérogames immergées	Myriophylle Myriophyllum spicatum L.	entier/reslyo	10/09/2019	CTOT (Sec)	9,91	-
11,33 km aval	Rhône en aval de Creys	Porcieu-Amblagnieu	05,40835	45,85132	Phanérogames immergées	Myriophylle Myriophyllum spicatum L.	entier/reslyo	10/09/2019	H-3 lié (Sec)	9,91	-
11,33 km aval	Rhône en aval de Creys	Porcieu-Amblagnieu	05,40835	45,85132	Phanérogames immergées	Myriophylle Myriophyllum spicatum L.	entier/reslyo	10/09/2019	Pourcentage massique de l'hydrogène (Sec)	9,91	-
11,33 km aval	Rhône en aval de Creys	Porcieu-Amblagnieu	05,40835	45,85132	Phanérogames immergées	Myriophylle Myriophyllum spicatum L.	Parties aériennes	10/09/2019	Gamma (Frais)+I-131	-	-
11,33 km aval	Rhône en aval de Creys	Porcieu-Amblagnieu	05,40835	45,85132	Phanérogames immergées	Myriophylle Myriophyllum spicatum L.	Parties aériennes	10/09/2019	Gamma (Cendre)	12,53	5,11
6,3 km aval	Rhône en aval du Bugey	Loyettes	05,19972	45,77228	Sédiments	Sédiments de milieu dulçaquicole	entier	12/03/2019	Granulométrie (Sec)	1,61	
6,3 km aval	Rhône en aval du Bugey	Loyettes	05,19972	45,77228	Sédiments	Sédiments de milieu dulçaquicole	entier	12/03/2019	MO après combustion (en cours) (Sec)	1,61	
6,3 km aval	Rhône en aval du Bugey	Loyettes	05,19972	45,77228	Sédiments	Sédiments de milieu dulçaquicole	Produits de tamisage (retenu sur tamis)	12/03/2019	Gamma (Sec)	1,61	

IRS [1] Rapport IRSN/2021-00434 Page: 94/284

Situation par rapport au C.N.P.E.	Chronique	Station	Longitude WGS 84	Latitude WGS 84	Nature	Espèce	Fraction	Date de prélèvement	Type de mesure	Frais/Sec	Sec/Cendres
7,88 km aval	Rhône en aval du Bugey	Saint-Maurice-de- Gourdans	05,16926	45,79612	Poissons	Chevesne Leuciscus cephalus	entier/eaulyo	07/05/2019	H-3 libre (Liquide)	4,91	•
7,88 km aval	Rhône en aval du Bugey	Saint-Maurice-de- Gourdans	05,16926	45,79612	Poissons	Chevesne Leuciscus cephalus	entier/reslyo	07/05/2019	C-14 par SL (Benzène) (Sec)	4,91	
7,88 km aval	Rhône en aval du Bugey	Saint-Maurice-de- Gourdans	05,16926	45,79612	Poissons	Chevesne Leuciscus cephalus	entier/reslyo	07/05/2019	C élémentaire (Sec)	4,91	
7,88 km aval	Rhône en aval du Bugey	Saint-Maurice-de- Gourdans	05,16926	45,79612	Poissons	Chevesne Leuciscus cephalus	entier/reslyo	07/05/2019	CTOT (Sec)	4,91	
7,88 km aval	Rhône en aval du Bugey	Saint-Maurice-de- Gourdans	05,16926	45,79612	Poissons	Chevesne Leuciscus cephalus	entier/reslyo	07/05/2019	H-3 lié (Sec)	4,91	
7,88 km aval	Rhône en aval du Bugey	Saint-Maurice-de- Gourdans	05,16926	45,79612	Poissons	Chevesne Leuciscus cephalus	entier/reslyo	07/05/2019	Pourcentage massique de l'hydrogène (Sec)	4,91	
7,88 km aval	Rhône en aval du Bugey	Saint-Maurice-de- Gourdans	05,16926	45,79612	Poissons	Chevesne Leuciscus cephalus	Muscle	07/05/2019	Gamma (Cendre)	4,95	16,79
12,24 km aval	Rhône en aval du Bugey	Balan	05,11433	45,81449	Phanérogames immergées	Myriophylle Myriophyllum spicatum L.	entier/eaulyo	10/09/2019	H-3 libre (Liquide)	10,54	-
12,24 km aval	Rhône en aval du Bugey	Balan	05,11433	45,81449	Phanérogames immergées	Myriophylle Myriophyllum spicatum L.	entier/reslyo	10/09/2019	C-14 par MS (spectrométrie de masse) (Sec)	10,54	-
12,24 km aval	Rhône en aval du Bugey	Balan	05,11433	45,81449	Phanérogames immergées	Myriophylle Myriophyllum spicatum L.	entier/reslyo	10/09/2019	C élémentaire (Sec)	10,54	
12,24 km aval	Rhône en aval du Bugey	Balan	05,11433	45,81449	Phanérogames immergées	Myriophylle Myriophyllum spicatum L.	entier/reslyo	10/09/2019	CTOT (Sec)	10,54	
12,24 km aval	Rhône en aval du Bugey	Balan	05,11433	45,81449	Phanérogames immergées	Myriophylle Myriophyllum spicatum L.	entier/reslyo	10/09/2019	H-3 lié (Sec)	10,54	
12,24 km aval	Rhône en aval du Bugey	Balan	05,11433	45,81449	Phanérogames immergées	Myriophylle Myriophyllum spicatum L.	entier/reslyo	10/09/2019	Pourcentage massique de l'hydrogène (Sec)	10,54	
12,24 km aval	Rhône en aval du Bugey	Balan	05,11433	45,81449	Phanérogames immergées	Myriophylle Myriophyllum spicatum L.	Parties aériennes	10/09/2019	Gamma (Frais)+I-131		
12,24 km aval	Rhône en aval du Bugey	Balan	05,11433	45,81449	Phanérogames immergées	Myriophylle Myriophyllum spicatum L.	Parties aériennes	10/09/2019	Gamma (Cendre)	14,36	3,02
14,13 km aval	Rhône en aval du Bugey	Niévroz	05,08935	45,81236	Sédiments	Sédiments de milieu dulçaquicole	entier	12/03/2019	Granulométrie (Sec)	2,43	-

IRS Rapport IRSN/2021-00434 Page: 95/284

Situation par rapport au C.N.P.E.	Chronique	Station	Longitude WGS 84	Latitude WGS 84	Nature	Espèce	Fraction	Date de prélèvement	Type de mesure	Frais/Sec	Sec/Cendres
14,13 km aval	Rhône en aval du Bugey	Niévroz	05,08935	45,81236	Sédiments	Sédiments de milieu dulçaquicole	entier	12/03/2019	MO après combustion (en cours) (Sec)	2,43	-
14,13 km aval	Rhône en aval du Bugey	Niévroz	05,08935	45,81236	Sédiments	Sédiments de milieu dulçaquicole	Produits de tamisage (retenu sur tamis)	12/03/2019	Gamma (Sec)	2,43	
18,98 km aval	Rhône en aval du Bugey	Meyzieu	05,02633	45,78979	Phanérogames immergées	Myriophylle Myriophyllum spicatum L.	Parties aériennes	10/09/2019	Gamma (Cendre)	12,67	3,99

- : absence de traitement.

Pdtfiltr : produit de filtration.

Eaulyo: eau extraite par lyophilisation.

Reslyo: résidu sec après lyphilisation.

Amont	Prélèvements en amont du dispositif de rejet des effluents liquides
Aval	Prélèvements en aval du dispositif de rejet des effluents liquides
	Prélèvements d'eau en aval du dispositif de rejet des effluents liquides

5.3.2 <u>Résultats et interprétation</u>

5.3.2.1 Radionucléides émetteurs gamma

5.3.2.1.1 Radionucléides émetteurs gamma d'origine naturelle

Les résultats d'analyse par spectrométrie γ des activités en radionucléides d'origine naturelle dans l'environnement aquatique du CNPE du Bugey sont présentés dans le tableau 50 page 122.

En 2019, la radioactivité d'origine naturelle détectée dans les sédiments, les végétaux et les poissons est proche des valeurs habituelles pour ces matrices [1]. La radioactivité est essentiellement liée à la présence du ⁴⁰K dans l'ensemble des matrices échantillonnées. Les activités en ⁴⁰K dans les poissons sont en accord avec les valeurs attendues pour ces animaux dont la teneur en potassium est physiologiquement régulée (activité massique toujours proche de 100 Bq.kg⁻¹ frais). Les éléments des familles de l'²³⁸U et du ²³²Th ainsi que le ⁷Be sont détectés dans les sédiments et les végétaux. Ces résultats de mesure attestent de l'absence de biais dans les étapes de prélèvements, de préparation et de mesure des échantillons.

5.3.2.1.2 Radionucléides émetteurs gamma d'origine artificielle

Les résultats d'analyse par spectrométrie γ des activités en radionucléides d'origine artificielle dans l'environnement aquatique du CNPE du Bugey sont présentés dans le tableau 51 page 123.

Le ¹³⁷Cs est présent dans tous les compartiments de l'écosystème aquatique sans distinction notable entre l'amont et l'aval en tenant compte de la variabilité observée au cours des années antérieures (figure 17 page 97 et tableau 37 page 110 au tableau 40 page 113). Comme fréquemment au cours des études précédentes, des traces de ⁶⁰Co et ^{110m}Ag sont observées dans les sédiments (0,47±0,11 Bq.kg⁻¹ sec et 0,34±0,11 Bq.kg⁻¹ sec en ^{110m}Ag et 0,22±0,09 Bq.kg⁻¹ sec en ⁶⁰Co) et les végétaux (0,58±0,16 Bq.kg⁻¹ sec et 0,62±0,14 Bq.kg⁻¹ sec en ^{110m}Ag, 1,46±0,26 Bq.kg⁻¹ sec et 1,48±0,23 Bq.kg⁻¹ sec en ⁶⁰Co,) prélevés en aval du CNPE du Bugey. Des traces de ⁵⁸Co sont également observées dans les végétaux prélevés en aval du site (0,36±0,17 Bq.kg⁻¹ sec). L'activité en ¹³¹I mesurée dans les phanérogames immergées est légèrement plus élevée en amont du site (3,06±0,95 Bq.kg⁻¹ sec) qu'en aval (2,3±1,1 Bq.kg⁻¹ sec), comme le plus souvent au cours des années antérieures.

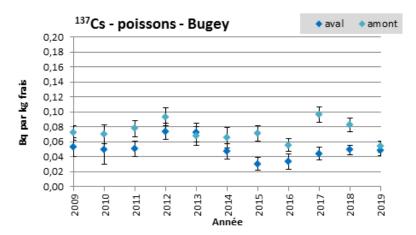


Figure 17 - Variation temporelle des activités (valeurs minimales à maximales) du ¹³⁷Cs détecté par spectrométrie γ dans les poissons prélevés dans l'environnement aquatique du CNPE du Bugey de 2009 à 2019.

IRS □ Rapport IRSN / 2021-00434 Page: 97/284

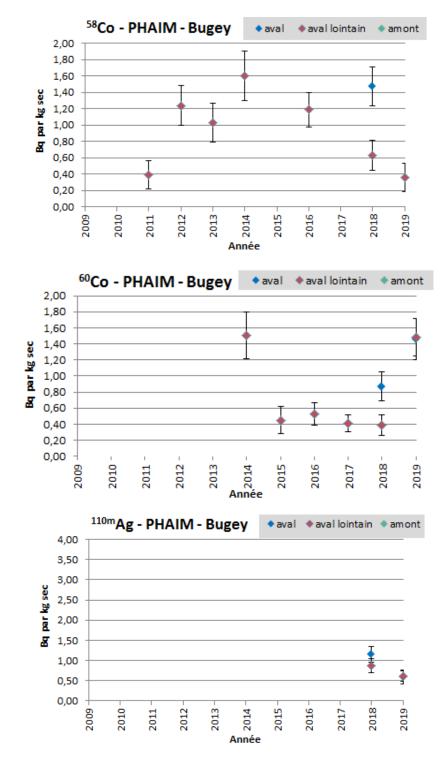


Figure 18 - Variation temporelle des activités (valeurs minimales à maximales) des 58 Co, 60 Co et 110m Ag détectés par spectrométrie γ dans les phanérogames collectées dans l'environnement aquatique du CNPE du Bugey de 2009 à 2019.

5.3.2.2 Radionucléides émetteurs bêta

5.3.2.2.1 Tritium

Les résultats d'analyse des activités en tritium libre et organiquement lié dans l'environnement aquatique du CNPE du Bugey sont présentés respectivement dans le tableau 52 page 124 et le tableau 53 page 125.

Les activités en tritium libre et en tritium organiquement lié mesurées dans les muscles de poissons sont proches entre l'amont et l'aval du CNPE du Bugey et sont dans la variabilité observée au cours des années antérieures (tableau 40 page 113, Figure 19 page 99 et Figure 20 page 99). Ces activités sont du même ordre de grandeur que les valeurs attendues dans un environnement non soumis à des rejets industriels (1 à 3 Bq.L⁻¹ d'après [1]).

L'activité en tritium libre mesurée dans les phanérogames immergées en amont du site est du même ordre de grandeur que les valeurs attendues dans un environnement non soumis à des rejets industriels (1 à 3 Bq.L⁻¹ d'après [1]). En revanche, les activités en tritium organiquement lié observées dans les phanérogames immergées (5,00±0,70 Bq.L⁻¹ d'eau de combustion en amont et 6,00±0,90 Bq.L⁻¹ d'eau de combustion en aval) sont supérieures aux valeurs caractéristiques d'un environnement non soumis à des rejets industriels, aussi bien en amont qu'en aval du CNPE. Il en est de même pour l'activité en tritium libre mesurée dans les phanérogames prélevées en aval du site (6,30±0,90 Bq.L⁻¹ d'eau de dessiccation). L'origine de ce marquage n'est pas identifiable (horlogerie, influence des sites de Creys-Malville et de Bugey). Dans l'eau de boisson, le tritium libre détecté présente une activité volumique qui est proche de la valeur attendue dans un environnement non soumis à des rejets industriels (1 à 3 Bq.L⁻¹ d'après [1]).

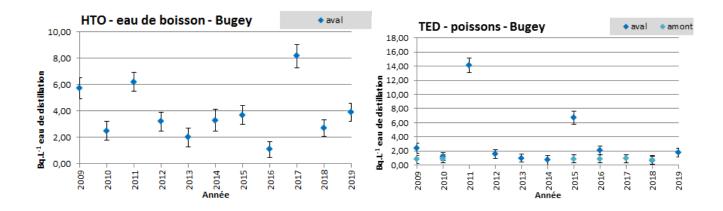


Figure 19 - Variation temporelle des activités (valeurs minimales à maximales) du tritium libre (HTO) dans l'eau de boisson et du tritium de l'eau de déshydratation (TED) dans les poissons prélevés dans l'environnement aquatique du CNPE du Bugey de 2009 à 2019.

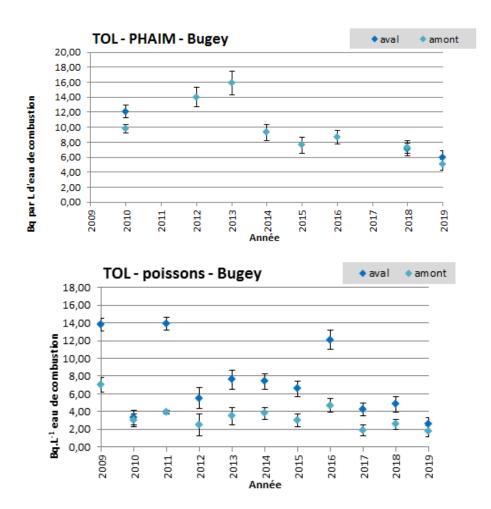


Figure 20 - Variation temporelle des activités (valeurs minimales à maximales) du tritium organiquement lié (TOL) détecté dans les phanérogames et les poissons prélevés dans l'environnement aquatique du CNPE du Bugey de 2009 à 2019.

5.3.2.2.2 Carbone 14

Les résultats d'analyse des activités en ¹⁴C dans l'environnement aquatique du CNPE du Bugey sont présentés dans le tableau 54 page 126.

En aval du CNPE, l'activité en ¹⁴C mesurée dans les phanérogames immergées est plus élevée que dans les échantillons prélevés en amont mais reste dans la gamme du bruit de fond radiologique observé sur le territoire français hors influence industrielle (inférieure à 220 Bq.kg⁻¹ C d'après [1]).

Dans les poissons, les activités en ¹⁴C mesurée dans les muscles de poissons sont proches de la valeur caractéristique d'un milieu fluvial non soumis à des rejets d'effluents radioactifs (inférieure à 220 Bq.kg⁻¹ C d'après [1]), avec une valeur plus élevée en aval qu'en amont du site.

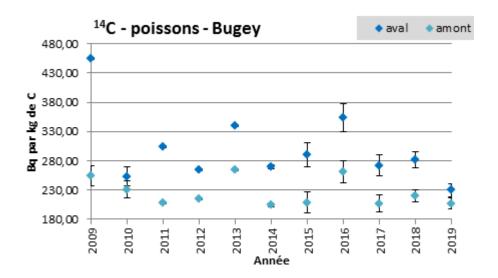


Figure 21 - Variation temporelle des activités (valeurs minimales à maximales) du ¹⁴C détecté dans les poissons prélevés dans l'environnement aquatique du CNPE du Bugey de 2009 à 2019.

5.3.2.2.3 Nickel 63 et Fer 55

Les résultats d'analyse des activités en ⁶³Ni et ⁵⁵Fe dans l'environnement aquatique du CNPE du Bugey sont présentés respectivement dans le tableau 55 page 127 et le tableau 56 page 127.

Les activités en ⁶³Ni et en ⁵⁵Fe mesurées dans les mousses aquatiques prélevées en amont et en aval du site sont inférieures aux seuils de décision.

5.4 Conclusion de l'état radiologique de l'environnement du CNPE du Bugey

En 2019, la radioactivité d'origine naturelle reste équivalente à celle observée avant la mise en service industrielle du CNPE. Ses composantes sont le ⁴⁰K, les éléments des familles du ²³²Th et de l'²³⁸U, d'origine tellurique, ainsi que le ⁷Be d'origine cosmogénique.

La radioactivité gamma d'origine artificielle du milieu terrestre est exclusivement imputable au ¹³⁷Cs présent dans le sol, le maïs, les salades, les mousses terrestres et le lait échantillonnés. La présence de ce radionucléide artificiel dans l'environnement terrestre est essentiellement liée aux retombées des essais nucléaires et de Tchernobyl. Les activités en tritium libre et en tritium organiquement lié mesurées dans l'herbe, le maïs et les salades ne mettent pas en évidence de marquage lié aux rejets d'effluent à l'atmosphère, excepté pour le lait de vache. Les grains de maïs prélevés à Loyettes carrière sont quant à eux marqués en tritium libre et en tritium organiquement lié par les rejets d'effluents liquides du CNPE, via l'irrigation. L'activité en ¹⁴C mesurée dans le lait de vache, les grains de maïs et les salades est proche du bruit de fond radiologique sur le territoire français hors influence industrielle (proche de 230 Bq.kg⁻¹ C d'après [1]). Au vu des résultats obtenus dans le cadre du suivi radioécologique 2019, les activités mesurées sur les matrices prélevées ne mettent pas en évidence de marquage par les rejets d'effluents atmosphériques du CNPE du Bugey.

Dans le domaine aquatique, le marquage par les rejets d'effluents liquides du CNPE du Bugey est mis en évidence en 2019 par la détection des ⁵⁸Co, ⁶⁰Co et ^{110m}Ag dans les phanérogames immergées et dans les sédiments prélevés en aval du site. L'activité en tritium organiquement lié mesurée dans les phanérogames immergées, supérieure au bruit de fond attendu et du même ordre de grandeur à l'amont et à l'aval, témoigne d'un marquage des eaux du Rhône par des rejets passés de l'industrie horlogère. L'activité en tritium libre mesurée dans les phanérogames prélevées en aval du site, supérieure à celle mesurée en amont, témoigne d'un marquage des eaux par les rejets d'effluents liquides tritiés du site. En raison de la dilution et du transfert rapide du tritium libre au sein de ce milieu récepteur, les prélèvements de phanérogames ont probablement eu lieu dans la concomitance d'un rejet liquide tritié du CNPE. Les activités les plus élevées mesurées en aval du site en comparaison des activités en amont de ce site pour le ¹⁴C dans les phanérogames immergées ainsi que les poissons attestent également d'un marquage de cet environnement par les rejets d'effluents liquides du site du Bugey. En revanche, l'activité en ¹³¹I détectée en amont et en aval du CNPE du Bugey dans les phanérogames immergées est essentiellement liée aux rejets hospitaliers.

IRS [1] Rapport IRSN/2021-00434 Page: 102/284

5.5 Tableaux de résultats

Tableau 30 - Activités en radionucléides émetteurs γ des échantillons de sols collectés dans l'environnement terrestre du site du Bugey lors des études radioécologiques de 2009 à 2019 (Bq.kg⁻¹ sec).

Date	avril 2009	avril 2010	avril 2011	avril 2012	avril 2013	avril 2014	avril 2015	avril 2016	avril 2017	février 2018	mars 2019
Distance par rapport au site	4 km	4 km	4 km	4 km	4 km	4 km	4 km	4 km	1,9 à 4 km	2,5 km	2,42 km
metteurs γ d'origine artifi	cielle :										
¹³⁴ Cs	-	-	-	-	-	-	-	-	-	-	-
¹³⁷ Cs	18 (1/1)	9,3-21 (8/8)	18,6 (1/1)	19,4 (1/1)	18,3 (1/1)	18,4 (1/1)	15,4 (1/1)	15,1 (1/1)	7,4-15,3 (2/2)	14,6 (1/1)	10,8 (1/1)
⁵⁸ Co	-	-	-	-	-	-	-	-	-	-	-
⁶⁰ Co	-	-	-	-	-	-	-	-	-	-	-
110m Ag	-	-	-	-	-	-	-	-	-	-	-
⁵⁴ Mn	-	-	-	-	-	-	-	-	-	-	-

n.a.: non analysé; -: inférieur au seuil de décision.

Tableau 31 - Activités en radionucléides émetteurs γ des échantillons de mousses collectés dans l'environnement terrestre du site du Bugey lors des études radioécologiques de 2009 à 2019 (Bq.kg⁻¹ sec).

Date	mars 2009	mars 2010	mars 2011	mars 2012	mars 2013	février 2014	mars 2015	mars 2016	mars 2017	février 2018	mars 2019
Distance par rapport au site	4 à 15 km	4 à 15 km	4 à 15 km	4 à 15 km	4 à 15 km	4 à 15 km	4 à 15 km	4 à 15 km	4 à 15 km	4 km	4,68 km
Émetteurs γ d'origine a	rtificielle :										
¹³⁴ Cs	-	-	-	-	-	-	-	-	-	-	-
¹³⁷ Cs	3,9-6 (2/2)	3,9-7 (2/2)	2,8-5,4 (2/2)	2,5-4,5 (2/2)	2,5-7,2 (2/2)	3,3-4,8 (2/2)	1,5-5,5 (2/2)	1,2-3,8 (2/2)	1,87-2,54 (2/2)	4,9 (1/1)	1,5 (1/1)
⁵⁸ Co	-	-	-	-	-	-	-	-	-	-	-
⁶⁰ Co	-	-	-	-	-	-	-	-	-	-	-
^{110m} Ag	-	-	-	-	-	-	-	-	-	-	-
54 Mn	-	-	-	-	-	-	-	-	-	-	-
^{131}I	-	-	-	-	-	-	-	-	-	-	-

Tableau 32 - Activités en radionucléides émetteurs γ et β des échantillons d'herbe collectés dans l'environnement terrestre du site du Bugey lors des études radioécologiques de 2009 à 2019.

Date	avril 2009	avril 2010	avril 2011	avril 2012	juin 2013	avril 2014	2015	2016	2017	2018	Mai 2019
Distance par rapport au site	4 km	3,75-4 km	4 km	4 km	4 km	4 km	4 km	4 km	4 km	4 km	2,37 km
Émetteurs γ d'or	rigine artificie	lle (Bq.kg ⁻¹	sec)								
¹³⁴ Cs	-	-	0,19	-	-	-	-	-	-	-	-
			(1/1)								
¹³⁷ Cs	0,21	1,6	0,38		0,12	0,36	0,31	0,16	0,137	0,074	-
CS	(1/1)	(1/2)	(1/1)	-	(1/1)	(1/1)	(1/1)	(1/1)	(1/1)	(1/1)	
⁵⁸ Co	-	-	-	-	-	-	-	-	-	-	-
⁶⁰ Co	-	-	-	-	-	-	-	-	-	-	-
^{110m} Ag	-	-	-	-	-	-	-	-	-	-	-
⁵⁴ Mn	-	-	-	-	-	-	-	-	-	-	-
Émetteurs B (³ H	libre: Bq.L ⁻¹ d	l'eau de des	ssiccation,	³H lié: Bq.L ⁻¹	d'eau de combu	stion, ¹⁴ C : Bq.kg	⁻¹ de C)				
³ H libre		1,3-1,9					1,6	1,5	1,5-2,4	1,1	1,6
an libre	n.a.	(2/2)	n.a.	n.a.	n.a.	n.a.	(1/1)	(1/1)	(2/2)	(1/1)	(1/1)
³H lié		2-2,4						1,5	1,4-1,8	1,6	1,2
ii de	n.a.	(2/2)	n.a.	n.a.	n.a.	n.a.	n.a.	(1/1)	(2/2)	(1/1)	(1/1)
¹⁴ C		241	235,7	228	230	227	222-231,5	219-233	226-234	228-241	En cours
C	n.a.	(1/1)	(1/1)	(1/1)	(1/1)	(1/1)	(4/4)	(5/5)	(6/6)	(4/4)	(4/4)

IRS Rapport IRSN/2021-00434 Page : 105/286

Tableau 33 - Activités en radionucléides émetteurs γ et β des échantillons de salade collectés dans l'environnement terrestre du site du Bugey lors des études radioécologiques de 2009 à 2019.

Date	Juin 2009	Juin 2010	Juillet 2011	Juin 2012	Juillet 2013	Juin 2014	Juin 2015	Juin 2016	Juin 2017	Juillet 2018	Juillet 2019
Distance par rapport au site	4 km	4-20,5 km	4 km	4 km	4 km	4 km	4 km	4 km	4 km	4 km	4,75 km
Émetteurs γ d	origine artific	cielle (Bq.kg	g ⁻¹ sec)								
¹³⁴ Cs	-	-	-	-	-	-	-	-	-	-	-
¹³⁷ Cs	0,4 (1/1)	0,7 (2/2)	-	0,25 (1/1)	-	0,28 (1/1)	0,28 (1/1)	0,32 (1/1)	0,17 (1/1)	0,64 (1/1)	0,89 (1/1)
⁵⁸ Co	-	-	-	-	-	-	-	-	-	-	-
⁶⁰ Co	-	-	-	-	-	-	-	-	-	-	-
^{110m} Ag	-	-	-	-	-	-	-	-	-	-	-
⁵⁴ Mn	-	-	-	-	-	-	-	-	-	-	-
Émetteurs ß (H libre : Bq.L	¹ d'eau de (dessiccation	n, ³H lié : Bq.l	1 d'eau de cor	mbustion, ¹⁴ C:	Bq.kg ⁻¹ de C)				
³H libre	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1,9 (1/1)	1,1 (1/1)	1,6 (1/1)	1,1 (1/1)
³H lié	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1,42 (1/1)	1,6 (1/1)	1,7 (1/1)	2,2 (1/1)
¹⁴ C	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	239 (1/1)	231 (1/1)	227 (1/1)	233 (1/1)

IRSI

Tableau 34 - Activités en radionucléides émetteurs γ et β des échantillons de maïs collectés dans l'environnement terrestre du site du Bugey lors des études radioécologiques entre 2010 et 2019.

Date	Septembre 2010	Septembre 2015	Septembre 2016	Septembre 2017	Septembre 2018	Septembre 2019
Distance par rapport au site	3,75-4 km	1,75-10 km	1,75-10 km	1,75-10 km	1,75-10 km	2,58-10,16 km
Émetteurs γ d'origine a	rtificielle (Bq.kg ⁻¹ sec)					
¹³⁴ Cs	-	-	-	-	-	-
¹³⁷ Cs	0,018 (1/2)	0,04-0,076 (3/3)	0,020-0,027 (2/3)	0,0053-0,027 (3/3)	0,024-0,034 (2/3)	0,009-0,0379 (3/3)
⁵⁸ Co	-	-	-	-	-	-
^o Co	-	-	-	-	-	-
^{10m} Ag	-	-	-	-	-	-
⁴Mn	-	-	-	-	-	-
	Bq.L ⁻¹ d'eau de dessiccat	ion, ³H lié : Bq.L ⁻¹ d'eau d	e combustion, ¹⁴ C : Bq.kg ⁻¹	¹ de C)		
H libre	n n	1,3-4,3	1,6-2,6	1,2-1,8	1,4-7,8	1,6-11,3
n libre	n.a.	(3/3)	(3/3)	(3/3)	(3/3)	(3/3)
H lié	n 2	0,7-5,5	0,9-2,9	1,2-3,24	2,11-9,3	1,6-9,5
ii de	n.a.	(3/3)	(3/3)	(3/3)	(3/3)	(3/3)
¹⁴ C		227-232	235-239	231-237	239-243	225,8-235
	n.a.	(3/3)	(3/3)	(3/3)	(3/3)	(3/3)

IRSI

Tableau 35 - Activités en radionucléides émetteurs γ et β des échantillons de lait collectés dans l'environnement terrestre du site du Bugey lors des études radioécologiques de 2009 à 2019.

Date	avril 2009	avril 2010	juillet 2011	avril 2012	avril 2013	juin 2014	avril 2015	avril 2016	avril 2017	février 2018	mai 2019
Distance par rapport au site	4 km	3,75-4 km	4 km	4 km	4 km	4 km	4 km	4 km	4 km	4 km	4,76 km
Émetteurs γ d'origi	ne artificielle	(Bq.L ⁻¹):									
¹³⁴ Cs	-	-	-	-	-	-	-	-	-	-	-
¹³⁷ Cs	0,019 (1/1)	0,013-0,023 (2/2)	0,034 (1/1)	0,023 (1/1)	0,023 (1/1)	0,026 (1/1)	0,010 (1/1)	0,013 (1/1)	0,0172 (1/1)	0,0223 (1/1)	0,0159 (1/1)
⁵⁸ Co	-	-	-	-	-	-	-	-	-	-	-
⁶⁰ Co	-	-	-	-	-	-	-	-	-	-	-
^{110m} Ag	-	-	-	-	-	-	-	-	-	-	-
⁵⁴ Mn	-	-	-	-	-	-	-	-	-	-	-
Émetteurs β (³H libi	re: Bq.L ⁻¹ , ³ H	l lié : Bq.L ⁻¹ d'e	au de combust	ion,¹⁴C : Bq.ks̞	g ⁻¹ de C) :						
³ H libre	1,4 (1/1)	0,7-1,1 (2/2)	1,1 (1/1)	1,2 (1/1)	0,9 (1/1)	1,0 (1/1)	-	0,6 (1/1)	1,2 (1/1)	-	0,8 (1/1)
³H lié	1,6 (1/1)	1,8 (2/2)	1,54 (1/1)	1,1 (1/1)	-	1,6 (1/1)	0,8 (1/1)	1,6 (1/1)	-	-	3,9 (1/1)
¹⁴ C	n.a.	240-245 (2/2)	n.a.	n.a.	n.a.	n.a.	228-230 (4/4)	229-238 (4/4)	226-233 (4/4)	237 (1/1)	229 (1/1)

Page: 108/284

n.a.: non analysé; -: inférieur au seuil de décision.

Tableau 36 - Activités en radionucléides des échantillons d'eau de boisson collectés dans l'environnement du site du Bugey lors des études radioécologiques de 2009 à 2019 (Bq.L⁻¹).

Date	juin 2009	avril 2010	juin 2011	juin 2012	juillet 2013	juin 2014	juin 2015	juin 2016	juin 2017	juillet 2018	juillet 2019
Distance par rapport au site	7,5 km	7,5 et 12 km	7,5 km	7,5 km	7,5 km	7,5 km	7,5 km	7,5 km	7,5 km	7,5 km	8,5 km
Nature	eau										
Émetteurs β:											
³ H libre	5,7 (1/1)	2,5 (1/2)	6,2 (1/1)	3,2 (1/1)	2 (1/1)	3,3 (1/1)	3,7 (1/1)	1,1 (1/1)	8,2 (1/1)	2,7 (1/1)	3,9 (1/1)

Tableau 37 - Activités en radionucléides émetteurs γ des échantillons de sédiments collectés dans l'environnement aquatique du site du Bugey lors des études radioécologiques de 2009 à 2019 (Bq.kg¹ sec).

Date	mars	2009	mar	s 2010	mar	s 2011	mars	2012	mars	2013	févrie	er 2014	mar	s 2015	mars	2016	mars	2017	févrie	2018	mars	2019
Situation par rappor au site		aval	amont	: aval	amont	aval	amont	aval	amont	aval	amont	aval	amont	aval	amont	aval	amont	aval	amont	aval	amont	aval
Émetteurs	γ d'ori	gine a	rtificie	lle :																		
¹³⁴ Cs	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
¹³⁷ Cs	9,3 (1/1)	3,9-4 (2/2)	12 (1/1)	3,3-5,7 (2/2)	9,5 (1/1)	4,4-7,2 (2/2)	9,6 (1/1)	3,7-6,2 (2/2)	10,1 (1/1)	2,73-4,6 (2/2)	8,0 (1/1)	3,1-6,5 (2/2)	7,8 (1/1)	4,6-7,4 (2/2)	8,7 (1/1)	2,79-5,7 (2/2)	7,4 (1/1)	3,86- 5,23 (2/2)	6,6 (1/1)	2,71-3 (2/2)	5,11 (1/1)	2,94- 4,71 (2/2)
⁵⁸ Co	-	-	-	0,4 (1/2)	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-
⁶⁰ Co	-	-	-	2,4 (1/2)	-	0,19 (1/2)	-	-	-	-	-	-		0,18 (1/2)	-	0,16 (1/2)	-	-	-	-	-	0,22 (1/2)
^{110m} Ag	-	0,4- 0,6 (2/2)	-	0,4-0,7 (2/2)	-	0,36- 0,84 (2/2)	-	0,27- 0,83 (2/2)	-	0,22- 0,26 (2/2)	-	0,24 (1/2)		0,31- 0,53 (2/2)	-	0,23- 0,34 (2/2)	-	0,3-0,39 (2/2)	-	-	-	0,34- 0,47 (2/2)
⁵⁴ Mn	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Tableau 38 - Activités en radionucléides émetteurs γ et β des échantillons de mousses collectés dans l'environnement aquatique du site du Bugey lors des études radioécologiques de 2009 à 2019.

Date	septem	bre 2009	avril	2010	juin	2011	septem	bre 2012	septem	bre 2013	octobr	e 2014		it et bre 2015	octo	bre 2016	septen	nbre 2017	juille	t 2018	septemb	ore 2019
Situation par rapport au site	amont	aval	amont	aval	amont	amont	amont	aval	amont	aval	amont	aval	amont	aval	amon	t aval	amon	t aval	amont	aval	amont	aval
Émetteurs	γ d'origi	ne artific	ielle (Bq.	kg-1 sec)																		
¹³⁴ Cs	-	-	-	-	-	0,41 (1/2)	-	-	-	-	-	-	-	-	-	-	-	-	n.a	n.a.		n.a.
¹³⁷ Cs	2,5 (1/1)	3,0-7,9 (2/2)	5,1 (1/1)	2,0-6,8 (2/2)	1,42 (1/1)	1,74-9,4 (2/2)	2,47 (1/1)	3,1-5,9 (2/2)	1,46 (1/1)	2,26-3,2 (2/2)	2,16 (1/1)	1,49- 2,8 (2/2)	1,74 (1/1)	2,07- 3,60 (2/2)	1,62 (1/1)	1,51-2,80 (2/2)	2,31 (1/1)	1,78-2,99 (2/2)	1,28 (1/1)	n.a.	1,14 (1/1)	n.a.
⁵⁸ Co		0,5 (1/2)		1,3-4,3 (2/2)	-	2,4 (1/2)	-	1,28 (1/2)		2,8 (1/2)	-	0,39- 2,6 (2/2)	-	0,38 (1/2)	-	3,90 (1/2)	-	0,47 (1/2)	-	n.a.	•	n.a.
⁶⁰ Co		0,5 (1/2)		0,9 (1/2)	-	2,4 (1/2)	-	1-4,8 (2/2)	-	0,71 (1/2)	-	0,5-3,8 (2/2)	-	1,33 (1/2)	-	2,0 (1/2)	-	0,22-3,38 (2/2)	-	n.a.		n.a.
⁵⁴ Mn	-	-	.	-	-	-	-	-	-	-	-	-	0,42 (1/1)	-	-	1,18 (1/2)	-	-	-	n.a.		n.a.
^{110m} Ag	-	1,6 (1/2)		0,8 (1/2)	-	1,95 (2/2)	-	0,43 (1/2)	-	0,54 (1/2)	-	0,47 (1/2)	-	0,35- 1,05 (2/2)	-	0,23-0,47 (2/2)	-	0,77 (1/2)	-	n.a.	•	n.a.
131 (1)	n.a.	n.a.		-	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	•	n.a.
Émetteurs	β (Bq.L ⁻¹	d'eau de	dessicca	tion, ³H l	ié : Bq.l	-1 d'eau	de comb	oustion,	¹⁴ C : Bq.	.kg ⁻¹ de C	, ⁶³ Ni er	n Bq.kg	¹ sec, N	i en g.kg	g-1 sec e	et ⁵⁵ Fe en	Bq.kg ⁻¹	sec):				
³ H libre	n.a.	n.a.	0,8 (1/1)	0,7-0,8 (2/2)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a	n.a.	n.a	. n.a.	n.a.	n.a.	n.a.	n.a.
³H lié	n.a.	n.a.	14,9 (1/1)	6,6-21, (2/2)	6 n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a	n.a.	n.a	. n.a.	n.a.	n.a.	n.a.	n.a.
¹⁴ C	n.a.	n.a.	205 (1/1)	216 (1/1)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a	n.a.	n.a	. n.a.	n.a.	n.a.	n.a.	n.a.
⁶³ Ni	n.a.	n.a.	0,23 (1/1)	-	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a	n.a.	n.a	. n.a.	-	-	-	-
Ni	n.a.	n.a.	0,0266 (1/1)	0,029 (1/1)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a	n.a.	n.a	. n.a.	0,026438 (1/1)	0,023435 (1/1)	n.a.	n.a.
⁵⁵ Fe	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	-	-	-	-

n.a.: non analysé; -: inférieur au seuil de décision. (1) Du fait de sa courte période physique, l'131 n'est mesuré que dans certains échantillons.

Tableau 39 - Activités en radionucléides émetteurs γ et β des échantillons de végétaux (phanérogames immergées et semi-aquatiques, toutes fractions confondues) collectés dans l'environnement aquatique du site du Bugey lors des études radioécologiques de 2009 à 2019.

Date	septer 200		juillet	2010	juin	2011		embre 012	septer 201		octobr	e 2014	septe	ùt et embre 015	août	2016		embre 017		embre 018	septer 201	
Situation par rapport au site	amont	aval	amont	aval	amont	aval	amont	aval	amont	aval	amont	aval	amont	aval	amont	aval	amont	aval	amont	aval	amont	aval
Émetteurs	γ d'orig	ine art	ificielle	(Bq.kg	¹ sec):																	
¹³⁴ Cs	-	-	-	-	-	-	.	-	-	-		-	-	-		-	.	-		-	-	-
¹³⁷ Cs	1,9 (1/1)	1,6 (1/1)	2,2 (1/1)	2,2 (1/1)	1,75 (1/1)	0,79 (1/1)	0,75 (1/1)	1,12 (1/1)	1,17 (1/1)	1,41 (1/1)	1,62 (1/1)	2,4 (1/1)	1,88 (1/1)	1,68 (1/1)	1,22 (1/1)	0,67 (1/1)	1,79- 3,8 (2/2)	1,54-1,7 (2/2)	0,35- 1,8 (2/2)	0,46- 1,14 (3/3)	0,35 (1/1)	0,73- 0,98 (2/2)
⁵⁸ Co	-	-	-	-	-	0,39 (1/1)		1,24 (1/1)	-	1,03 (1/1)		1,6 (1/1)	-	-		1,19 (1/1)		-	-	0,63- 1,47 (3/3)	-	0,36 (1/2)
⁶⁰ Co	-	-	-	-	-	-		4,9 (1/1)	-	-		1,51 (1/1)	-	0,45 (1/1)		0,53 (1/1)		0,41 (1/2)	-	0,39- 0,87 (2/3)	-	1,46- 1,48 (2/2)
⁵⁴ Mn	-	-	-	-	-	-	-	-	-	-		-	-	-	-	0,39 (1/1)	-	-		-	-	-
^{110m} Ag	-	0,9 (1/1)	-	-	-	0,45 (1/1)		0,27 (1/1)	-	0,41 (1/1)		0,61 (1/1)	-	0,53 (1/1)		0,45 (1/1)		0,32 (1/2)	-	0,86-2,2 (3/3)	-	0,58- 0,62 (2/2)
131 (1)	16 (1/1)	3,9 (1/1)	-	-	5,7 (1/1)	1,8 (1/1)	24,2 (1/1)	6,8 (1/1)	6,5 (1/1)	3,1 (1/1)	4,7 (1/1)	6,6 (1/1)	41 (1/1)	13,6 (1/1)	2,1 (1/1)	-	19 (1/1)	5,9 (1/1)	2 (1/1)	1,7 (1/1)	3,13 (1/1)	2,4 (1/1)
Émetteurs	β (³H lib	re : Bo	լ.L ⁻¹ d'ea	u de d	essicca	tion, ³ H	lié : Bq	.L ⁻¹ d'ea	u de cor	nbustio	on, ¹⁴ C	: Bq.kg	⁻¹ de C):								
³H libre	n.a.	n.a.	0,8 (1/1)	0,8 (1/1)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	-	0,6 (1/1)	1,3 (1/1)	1,1 (1/1)	•	13,1 (1/1)	1,2 (1/1)	1 (1/1)	0,9 (1/1)	6,3 (1/1)
³H lié	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	14 (1/1)	n.a.	15,9 (1/1)	n.a.	9,3 (1/1)	n.a.	7,6 (1/1)	n.a.	8,7 (1/1)	n.a.	n.a.	n.a.	7,3 (1/1)	7 (1/1)	5 (1/1)	6 (1/1)
¹⁴ C	n.a.	n.a.	201 (1/1)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	189,4 (1/1)	256,6 (1/1)	189,9 (1/1)	226,1 (1/1)

n.a.: non analysé; -: inférieur au seuil de décision. (1) Du fait de sa courte période physique, l'131 n'est mesuré que dans certains échantillons.

IRSN Rapport IRSN/2021-00434 Page : 112/284

Tableau 40 - Activités en radionucléides émetteurs γ et β des échantillons de poissons (muscles) collectés dans l'environnement aquatique du site du Bugey lors des études radioécologiques de 2009 à 2019.

Date	avril	2009	avril 2	2010	avril 2	2011	juillet	2012	avril	2013	juillet	2014	avril	2015	avril	2016	avril	2017	avril	2018	mai	2019
Situation par rapport au site	amont	aval	amont	aval	amont	aval	amont	aval	amont	aval	amont	aval	amont	aval	amont	aval	amont	aval	amont	aval	amont	aval
Émetteu	rs γ d'oi	rigine	artificie	lle (Bq.	kg ⁻¹ frai	s):																
¹³⁴ Cs	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
¹³⁷ Cs	0,072 (1/1)	- ,	0,07 (1/1)	0,05 (1/1)	-,	0,074 (1/1)	0,093 (1/1)	0,072 (1/1)	0,068 (1/1)	0,047 (1/1)	0,065 (1/1)	0,03 (1/1)	0,071 (1/1)	0,034 (1/1)	0,056 (1/1)	0,044 (1/1)	0,096 (1/1)	0,049 (1/1)	0,082 (1/1)	0,048 (1/1)	0,0536 (1/1)	0,0418 (1/1)
⁵⁸ Co	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
⁶⁰ Co	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
^{110m} Ag	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
⁵⁴ Mn	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Émetteu	rsβ(³H	libre :	Bq.L ⁻¹ c	l'eau d	e dessio	cation	TOL : I	3q.L ⁻¹ d	'eau de	combus	tion, ¹⁴ 0	: Bq.k	cg⁻¹ de C):								
³ H libre	0,8 (1/1)	2,4 (1/1)	0,9 (1/1)	1,2 (1/1)	-	14,1 (1/1)	-	1,6 (1/1)	-	1,0 (1/1)	-	0,7 (1/1)	0,9 (1/1)	6,7 (1/1)	0,9 (1/1)	2,1 (1/1)	0,9 (1/1)	-	0,7 (1/1)	0,7 (1/1)	-	1,8 (1/1)
TOL	7 (1/1)	13,8 (1/1)	3 (1/1)	3,3 (1/1)	3,9 (1/1)	13,9 (1/1)	2,5 (1/1)	5,5 (1/1)	3,5 (1/1)	7,6 (1/1)	3,8 (1/1)	7,4 (1/1)	3,0 (1/1)	6,6 (1/1)	4,7 (1/1)	12,1 (1/1)	1,9 (1/1)	4,2 (1/1)	2,6 (1/1)	4,8 (1/1)	1,8 (1/1)	2,6 (1/1)
¹⁴ C		454,8 (1/1)		253 (1/1)	208,3 (1/1)	303,5 (1/1)	215,3 (1/1)	264,2 (1/1)	264,3 (1/1)	340,2 (1/1)	204,3 (1/1)	269,6 (1/1)		290 (1/1)	261 (1/1)	354 (1/1)	207 (1/1)	272 (1/1)	220 (1/1)	282 (1/1)	207 (1/1)	230 (1/1)

Tableau 41 - Matière organique et granulométrie de sols de prairie récoltés dans la région du CNPE du Bugey lors du suivi radioécologique 2019.

Station	Date de prélèvement	Nature	Espèce	Fraction	Date de mesure	Qualité	Frais/Sec	Fractions	%
Vernas	11/03/2019	Sols non cultives	Sol de paturage ou de prairie 0 - 5 cm	Diametre inferieur a 2 mm	21/10/2019	sec	1,23	Matiere organique	4,46
								Argiles (<2µm)	23,30
								Limons Fins	14,60
								Limons Grossiers	12,10
								Sables Fins	17,20
								Sables Grossiers	32,80

Dans les tableaux des pages suivantes, pour le milieu terrestre :

-	Prélèvements hors vents dominants de l'installation
	Prélèvements sous les vents dominants de l'installation
	Prélèvements sous les vents dominants de l'installation mais alimenté par une nappe phréatique située hors influence de l'installation

Tableau 42 - Activités en radionucléides émetteurs γ d'origine naturelle mesurées dans des échantillons collectés dans l'environnement terrestre du site du Bugey lors du suivi radioécologique 2019 (Bq.kg⁻¹ sec pour les sols et les végétaux, Bq.L⁻¹ pour le lait).

Chronique	Station	Date de prélèvement	Nature	Espèce	Fraction	Qualité	Frais/Sec	Date de mesure	⁴⁰ K	Famille du ²³² Th	F	amille de l' ²	³⁸ U	⁷ Be	Unité
										²²⁸ Ac	²³⁴ Th	^{234m} Pa	²¹⁰ Pb		
Zone influencée proche (< 5 km)	Vernas	11/03/2019	Sols	Sol de pâturage ou de prairie	Produits de tamisage (retenu sur tamis)	sec	1,23	08/04/2019	357±32	36,9±4,4	n.a.	30,0±8,0	n.a.	3,10±0,80	Bq.kg ⁻¹ sec
Zone sous les vents à plus 5 km	Loyettes	10/09/2019	Céréales	Maïs Zea mays	Graine	cendre	1,39	22/11/2019	116±11	≤ 0,024	≤ 0,060	≤ 0,80	≤ 0,070	0,244±0,049	Bq.kg ⁻¹ sec
Zone influencée proche (< 5 km)	Loyettes	10/09/2019	Céréales	Maïs Zea mays	Graine	cendre	1,31	22/11/2019	107±11	≤ 0,022	≤ 0,060	≤ 0,80	≤ 0,060	0,224±0,049	Bq.kg ^{⋅1} sec
Zone non influencée	Chazey- sur-Ain	10/09/2019	Céréales	Maïs Zea mays	Graine	cendre	1,23	04/12/2019	115±11	≤ 0,036	≤ 0,090	≤ 1,3	≤ 0,100	≤ 0,14	Bq.kg⁻¹ sec
Zone influencée proche (< 5 km)	Leyrieu	03/07/2019	Légumes	Laitue Lactuca sativa	Feuilles annuelles	cendre	23,78	23/08/2019	2 250±220	3,40±0,80	4,6±1,2	≤ 31	14,9±1,9	111±10	Bq.kg ⁻¹ sec
Zone influencée proche (< 5 km)	Vernas	07/05/2019	Herbes	Herbe de prairie permanente	Parties aériennes	cendre	5,18	06/08/2019	960±100	≤ 0,36	≤ 0,90	≤ 12	8,0±1,0	108±10	Bq.kg ⁻¹ sec
Zone influencée proche (< 5 km)	Leyrieu	12/03/2019	Mousses terrestres	Rhytidiadelphus triquetrus Rhytidiadelphus triquetrus	Parties aériennes	frais	3,05	20/03/2019	104±12	≤ 1,3	n.a.	≤ 31	n.a.	259±21	Bq.kg ^{⋅1} sec
Secteur sud Bugey	Leyrieu	07/05/2019	Produits laitiers	Lait de vache	entier	cendre	8,38	05/08/2019	52,2±5,2	≤ 0,024	≤ 0,060	≤ 0,83	≤ 0,060	≤ 0,095	Bq.kg ⁻¹ frais

Tableau 43 - Activités en radionucléides émetteurs γ d'origine artificielle mesurées dans des échantillons collectés dans l'environnement terrestre du site du Bugey lors du suivi radioécologique 2019 (Bq.kg⁻¹ sec pour les sols et les végétaux, Bq.L⁻¹ pour le lait).

Chronique	Station	Date de prélèvement	Nature	Espèce	Fraction	Qualité I	Frais/Sec	Date de mesure	¹³⁴ Cs	¹³⁷ Cs	⁵⁸ Co	⁶⁰ Co	^{110m} Ag	⁵⁴ Mn	¹²⁴ Sb	¹²⁵ Sb	131 *	Unité
Zone influencée proche (< 5 km)	Vernas	11/03/2019	Sols	Sol de pâturage ou de prairie	Produits de tamisage (retenu sur tamis)	sec	1,23	08/04/2019	≤ 0,12	10,80±0,90	≤ 0,14	≤ 0,13	≤ 0,15	≤ 0,15	≤ 0,15	≤ 0,35	n.a.	Bq.kg ⁻¹ sec
Zone sous les vents à plus 5 km	Loyettes	10/09/2019	Céréales	Maïs Zea mays	Graine	cendre	1,39	22/11/2019	≤ 0,0050	0,0090±0,0029	≤ 0,011	≤ 0,0080	≤ 0,0080	≤ 0,0060	≤ 0,011	≤ 0,012	n.a.	Bq.kg ⁻¹ sec
Zone influencée proche (< 5 km)	Loyettes	10/09/2019	Céréales	Maïs Zea mays	Graine	cendre	1,31	22/11/2019	≤ 0,0048	0,0379±0,0048	≤ 0,011	≤ 0,0080	≤ 0,0070	≤ 0,0060	≤ 0,0100	≤ 0,012	n.a.	Bq.kg ⁻¹ sec
Zone non influencée	Chazey- sur-Ain	10/09/2019	Céréales	Maïs Zea mays	Graine	cendre	1,23	04/12/2019	≤ 0,0080	0,0102±0,0045	≤ 0,020	≤ 0,012	≤ 0,012	≤ 0,0100	≤ 0,019	≤ 0,018	n.a.	Bq.kg ⁻¹ sec
Zone influencée proche (< 5 km)	Leyrieu	03/07/2019	Légumes	Laitue <i>Lactuca sativa</i>	Feuilles annuelles	cendre	23,78	23/08/2019	≤ 0,21	0,89±0,16	≤ 0,36	≤ 0,31	≤ 0,31	≤ 0,23	≤ 0,34	≤ 0,50	n.a.	Bq.kg ⁻¹ sec
Zone influencée proche (< 5 km)	Vernas	07/05/2019	Herbes	Herbe de prairie permanente	Parties aériennes	cendre	5,18	06/08/2019	≤ 0,080	≤ 0,11	≤ 0,19	≤ 0,12	≤ 0,12	≤ 0,090	≤ 0,18	≤ 0,18	n.a.	Bq.kg ⁻¹ sec
Zone influencée proche (< 5 km)	Leyrieu	12/03/2019	Mousses terrestres	Rhytidiadelphus triquetrus Rhytidiadelphus triquetrus	Parties aériennes	frais	3,05	20/03/2019	≤ 0,24	1,50±0,31	≤ 0,27	≤ 0,34	≤ 0,34	≤ 0,27	≤ 0,27	≤ 0,85	≤ 0,49	Bq.kg ⁻¹ sec
Secteur sud Bugey	Leyrieu	07/05/2019	Produits laitiers	Lait de vache	entier	cendre	8,38	05/08/2019	≤ 0,0052	0,0159±0,0037	≤ 0,013	≤ 0,0083	≤ 0,0083	≤ 0,0060	≤ 0,012	≤ 0,012	n.a.	Bq.L ⁻¹ d'ECH.

^{*} Du fait de sa courte période radioactive, l'¹³¹I a été analysé sur des échantillons frais.

Tableau 44 - Activités en tritium libre mesurées dans des échantillons collectés dans l'environnement terrestre du CNPE du Bugey lors du suivi radioécologique 2019.

Chronique	Station	Date de prélèvement	Nature	Espèce	Fraction	Frais/Sec	Date de mesure	³ H libre (Bq.L ⁻¹ d'eau de dessiccation)	³ H libre (Bq.kg ⁻¹ frais ou Bq.L ⁻¹)	Unité
Zone sous les vents à plus 5 km	Loyettes	10/09/2019	Céréales	Maïs Zea mays	entier/eaulyo	1,57	21/10/2019	2,30±0,60	0,84±0,22	Bq.kg ^{.1} frais
Zone influencée proche (< 5 km)	Loyettes	10/09/2019	Céréales	Maïs Zea mays	entier/eaulyo	1,54	21/10/2019	11,3±1,0	3,98±0,35	Bq.kg ⁻¹ frais
Zone non influencée	Chazey-sur-Ain	10/09/2019	Céréales	Maïs Zea mays	entier/eaulyo	1,46	21/10/2019	1,60±0,60	0,51±0,19	Bq.kg ^{·1} frais
Zone influencée proche (< 5 km)	Leyrieu	03/07/2019	Légumes	Laitue Lactuca sativa	entier/eaulyo	21,00	28/07/2019	1,10±0,60	1,05±0,57	Bq.kg ⁻¹ frais
Zone influencée proche (< 5 km)	Vernas	07/05/2019	Herbes	Herbe de prairie permanente	entier/eaulyo	5,19	05/08/2019	1,60±0,70	1,29±0,57	Bq.kg ⁻¹ frais
Secteur sud Bugey	Leyrieu	07/05/2019	Produits laitiers	Lait de vache	entier/eaulyo	8,15	06/06/2019	0,80±0,60	0,70±0,53	Bq.L ⁻¹ d'ECH.

Tableau 45 - Activités en tritium organiquement lié (TOL) mesurées dans des échantillons collectés dans l'environnement terrestre du CNPE du Bugey lors du suivi radioécologique 2019.

Chronique	Station	Date de prélèvement	Nature	Espèce	Fraction	Frais/Sec	Date de mesure	TOL (Bq.L ⁻¹ d'eau de combustion)	TOL (Bq.kg ⁻¹ M.O.)	TOL (Bq.kg ⁻¹ frais ou Bq.L ⁻¹)	Unité
Zone sous les vents à plus 5 km	Loyettes	10/09/2019	Céréales	Maïs Zea mays	entier/reslyo	1,57	25/11/2019	2,50±0,70	n.a.	0,98±0,28	Bq.kg ⁻¹ frais
Zone influencée proche (< 5 km)	Loyettes	10/09/2019	Céréales	Maïs Zea mays	entier/reslyo	1,54	04/12/2019	9,50±0,90	n.a.	3,78±0,39	Bq.kg ⁻¹ frais
Zone non influencée	Chazey-sur-Ain	10/09/2019	Céréales	Maïs Zea mays	entier/reslyo	1,46	24/11/2019	1,60±0,70	n.a.	0,69±0,30	Bq.kg ⁻¹ frais
Zone influencée proche (< 5 km)	Leyrieu	03/07/2019	Légumes	Laitue <i>Lactuca sativa</i>	entier/reslyo	21,00	18/09/2019	2,2±1,0	n.a.	0,063±0,029	Bq.kg ⁻¹ frais
Zone influencée proche (< 5 km)	Vernas	07/05/2019	Herbes	Herbe de prairie permanente	entier/reslyo	5,19	18/09/2019	1,20±0,60	n.a.	0,126±0,063	Bq.kg ⁻¹ frais
Secteur sud Bugey	Leyrieu	07/05/2019	Produits laitiers	Lait de vache	entier/reslyo	8,15	29/06/2019	3,90±0,70	n.a.	0,348±0,064	Bq.L ⁻¹ d'ECH.

Tableau 46 - Activités en ¹⁴C mesurées dans des échantillons collectés dans l'environnement terrestre du CNPE du Bugey lors du suivi radioécologique 2019.

Chronique	Station	Date de prélèvement	Nature	Espèce	Fraction	Frais/Sec	Date de mesure ¹⁴ C	¹⁴ C (Bq.kg ⁻¹ de C)	δ ^{12/13} C (‰)	pMC (%)	¹⁴ C (Bq.kg ^{.1} frais ou Bq.L ^{.1})	C TOT. (g.kg ⁻¹ frais ou g.L ⁻¹)	Unité
Zone sous les vents à plus 5 km	Loyettes	10/09/2019	Céréales	Maïs Zea mays	entier/reslyo	1,57	04/01/2020	235±12	-12,49	101,4±5,2	64,5±3,3	270	Frais
Zone influencée proche (< 5 km)	Loyettes	10/09/2019	Céréales	Maïs Zea mays	entier/reslyo	1,54	04/01/2020	233±11	-12,34	100,5±4,7	63,7±3,0	270	Frais
Zone non influencée	Chazey-sur- Ain	10/09/2019	Céréales	Maïs Zea mays	entier/reslyo	1,46	31/01/2020	225,8±1,3	-12,6	97,43±0,56	65,25±0,38	290	Frais
Zone influencée proche (< 5 km)	Leyrieu	03/07/2019	Légumes	Laitue Lactuca sativa	entier/reslyo	21,00	07/12/2019	233±12	-29,1	103,9±5,4	3,86±0,20	17	Frais
Secteur sud Bugey	Leyrieu	07/05/2019	Produits laitiers	Lait de vache	entier/reslyo	8,15	26/09/2019	229±11	-28,16	102,0±4,9	14,20±0,68	62	Liquide

Tableau 47 - Activités en radionucléides émetteurs α mesurées dans des échantillons collectés dans l'environnement terrestre du site du Bugey lors du suivi radioécologique 2019.

Chronique	Station	Date de prélèvement	Nature	Espèce	Fraction	Frais/Sec	Date de mesure	²⁴⁴ Cm	²³⁸ Pu	²³⁹⁺²⁴⁰ Pu	²⁴¹ Am	Unité	²³⁸ Pu/ ²³⁹⁺²⁴⁰ Pu	²⁴¹ Am/ ²³⁹⁺²⁴⁰ Pu	Unité
Zone influencée proche (< 5 km)	Vernas	11/03/2019	Sols	Sol de pâturage ou de prairie	Produits de tamisage (retenu sur tamis)	1,23	12/09/2019	n.a.	7,7±1,3	230±12	98,4±7,5	mBq.kg ⁻¹ sec	0,0333±0,0060	0,427±0,040	Sans unité
Zone non influencée	Bressolles	12/03/2019	Sols	Sol de pâturage ou de prairie	Produits de tamisage (retenu sur tamis)	1,37	26/09/2019	n.a.	5,3±1,0	213±11	86,3±6,5	mBq.kg ⁻¹ sec	0,0249±0,0050	0,406±0,037	Sans unité

Tableau 48 - Activité en 90Sr mesurée dans des échantillons collectés dans l'environnement terrestre du CNPE du Bugey lors du suivi radioécologique 2019.

Chronique	Station	Date de prélèvement	Nature	Espèce	Fraction	Frais/Sec	Date de mesure	⁹⁰ Sr	Unité ⁹⁰ Sr
Zone influencée proche (< 5 km)	Vernas	11/03/2019	Sols	Sol de pâturage ou de prairie	Produits de tamisage (retenu sur tamis)	1,23	10/09/2019	1,22±0,27	Bq.kg ⁻¹ sec

Tableau 49 - Matière organique et granulométrie des échantillons de sédiments collectés dans le Rhône en amont et en aval de l'émissaire de rejets du CNPE du Bugey lors du suivi radioécologique 2019.

Station	Date de prélèvement	Nature	Espèce	Fraction	Date de mesure	Qualité	Frais/Sec	Fractions	%
Porcieu-Amblagnieu	11/03/2019	Sediment	Sediment	Diametre inferieur a 2 mm	21/10/2019	sec	1,73	Matiere organique	2,78
								Argiles (<2µm)	15,40
								Limons Fins	33,80
								Limons Grossiers	27,70
								Sables Fins	21,20
								Sables Grossiers	1,90
Loyettes	12/03/2019	Sediment	Sediment	Diametre inferieur a 2 mm	21/10/2019	sec	1,61	Matiere organique	2,36
								Argiles (<2µm)	7,90
								Limons Fins	14,10
								Limons Grossiers	13,60
								Sables Fins	55,50
								Sables Grossiers	8,90
Niévroz	12/03/2019	Sediment	Sediment	Diametre inferieur a 2 mm	21/10/2019	sec	2,43	Matiere organique	3,80
								Argiles (<2µm)	17,60
								Limons Fins	29,30
								Limons Grossiers	28,70
								Sables Fins	19,80
								Sables Grossiers	4,60

Dans les tableaux des pages suivantes, pour le milieu aquatique :

Prélèvements en amont du dispositif de rejet des effluents liquides

Prélèvements en aval du dispositif de rejet des effluents liquides

Tableau 50 - Activités en radionucléides émetteurs γ d'origine naturelle mesurées dans des échantillons collectés dans l'environnement aquatique du CNPE du Bugey lors du suivi radioécologique 2019 (Bq.kg⁻¹ sec pour les sédiments et les végétaux, Bq.kg⁻¹ frais pour les poissons).

Chronique	Station	Date de prélèvement	Nature	Espèce	Fraction	Qualité	Frais/Sec	Date de mesure	⁴⁰ K	Famille du ²³² Th	Fa	amille de l' ²³	⁸ U	⁷ Be	Unité
										²²⁸ Ac	²³⁴ Th	^{234m} Pa	²¹⁰ Pb		
Rhône en amont du Bugey	Porcieu- Amblagnieu	11/03/2019	Sédiments	Sédiments de milieu dulçaquicole	Produits de tamisage (retenu sur tamis)	sec	1,73	08/04/2019	514±44	49,0±6,0	n.a.	46±12	n.a.	10,6±1,5	Bq.kg ⁻¹ sec
Rhône en aval du Bugey	Niévroz	12/03/2019	Sédiments	Sédiments de milieu dulçaquicole	Produits de tamisage (retenu sur tamis)	sec	2,43	08/04/2019	390±34	36,0±4,3	n.a.	32±11	n.a.	29,0±2,7	Bq.kg ⁻¹ sec
Rhône en aval du Bugey	Loyettes	12/03/2019	Sédiments	Sédiments de milieu dulçaquicole	Produits de tamisage (retenu sur tamis)	sec	1,61	08/04/2019	433±37	36,0±4,2	n.a.	38±10	n.a.	41,0±3,5	Bq.kg ⁻¹ sec
Rhône en aval du Bugey	Balan	10/09/2019	Phanérogames aquatiques	Myriophylle non identifié Myriophyllum sp.	Parties aériennes	cendre	14,36	10/12/2019	910±90	9,2±1,3	18,1±2,1	≤ 23	18,9±2,2	84,0±9,0	Bq.kg ⁻¹ sec
Rhône en aval du Bugey	Meyzieu	10/09/2019	Phanérogames aquatiques	Myriophylle non identifié Myriophyllum sp.	Parties aériennes	cendre	12,67	04/12/2019	640±60	11,0±1,5	15,1±1,7	≤ 26	19,8±2,1	67,0±7,0	Bq.kg ⁻¹ sec
Rhône en aval de Creys	Porcieu- Amblagnieu	10/09/2019	Phanérogames aquatiques	Myriophylle non identifié Myriophyllum sp.	Parties aériennes	cendre	12,53	10/12/2019	690±70	8,3±1,1	30,8±3,0	35,0±9,0	10,3±1,3	62,0±6,0	Bq.kg ⁻¹ sec
Rhône en aval du Bugey	Saint-Maurice- de-Gourdans	07/05/2019	Poissons	Chevesne Leuciscus cephalus	Muscle	cendre	4,95	07/08/2019	109±10	≤ 0,046	≤ 0,12	≤ 1,6	≤ 0,12	≤ 0,20	Bq.kg ⁻¹ frais
Rhône en aval de Creys	Porcieu- Amblagnieu	06/05/2019	Poissons	Hotu Chondrostoma nasus	Muscle	cendre	4,12	05/08/2019	108±11	≤ 0,041	≤ 0,097	≤ 1,5	≤ 0,11	≤ 0,17	Bq.kg ⁻¹ frais

Tableau 51 - Activités en radionucléides émetteurs γ d'origine artificielle mesurées dans des échantillons collectés dans l'environnement aquatique du CNPE du Bugey lors du suivi radioécologique 2019 (Bq.kg⁻¹ sec pour les sédiments et les végétaux, Bq.kg⁻¹ frais pour les poissons).

Chronique	Station	Date de prélèvement	Nature	Espèce	Fraction	Qualité	Frais/Sec	Date de mesure	¹³⁴ Cs	¹³⁷ Cs	⁵⁸ Co	⁶⁰ Co	^{110m} Ag	⁵⁴ Mn	¹²⁴ Sb	¹²⁵ Sb	¹³¹ *	Unité
Rhône en amont du Bugey	Porcieu- Amblagnieu	11/03/2019	Sédiments	Sédiments de milieu dulçaquicole	Produits de tamisage (retenu sur tamis)	sec	1,73	08/04/2019	≤ 0,43	5,11±0,44	≤ 0,33	≤ 0,28	≤ 0,19	≤ 0,20	≤ 0,30	≤ 0,48	n.a.	Bq.kg ⁻¹ sec
Rhône en aval du Bugey	Niévroz	12/03/2019	Sédiments	Sédiments de milieu dulçaquicole	Produits de tamisage (retenu sur tamis)	sec	2,43	08/04/2019	≤ 0,13	4,71±0,41	≤ 0,17	≤ 0,16	0,34±0,11	≤ 0,17	≤ 0,16	≤ 0,39	n.a.	Bq.kg ⁻¹ sec
Rhône en aval du Bugey	Loyettes	12/03/2019	Sédiments	Sédiments de milieu dulçaquicole	Produits de tamisage (retenu sur tamis)	sec	1,61	08/04/2019	≤ 0,13	2,94±0,26	≤ 0,15	0,220±0,090	0,47±0,11	≤ 0,16	≤ 0,16	≤ 0,38	n.a.	Bq.kg ⁻¹ sec
Rhône en aval du Bugey	Balan	10/09/2019	Phanérogames aquatiques	Myriophylle non identifié Myriophyllum sp.	Parties aériennes	frais	11,49	18/09/2019	≤ 1,3	1,95±0,80	≤ 1,3	≤ 1,8	≤ 1,5	≤ 1,3	≤ 1,3	≤ 3,2	2,3±1,1	Bq.kg ^{⋅1} sec
Rhône en aval du Bugey	Balan	10/09/2019	Phanérogames aquatiques	Myriophylle non identifié Myriophyllum sp.	Parties aériennes	cendre	14,36	10/12/2019	≤ 0,17	0,73±0,13	≤ 0,60	1,46±0,26	0,58±0,16	≤ 0,21	≤ 0,40	≤ 0,44	n.a.	Bq.kg ^{⋅1} sec
Rhône en aval du Bugey	Meyzieu	10/09/2019	Phanérogames aquatiques	Myriophylle non identifié Myriophyllum sp.	Parties aériennes	cendre	12,67	04/12/2019	≤ 0,23	0,98±0,14	0,36±0,17	1,48±0,23	0,62±0,14	≤ 0,14	≤ 0,38	≤ 0,44	n.a.	Bq.kg ^{⋅1} sec
Rhône en aval de Creys	Porcieu- Amblagnieu	10/09/2019	Phanérogames aquatiques	Myriophylle non identifié Myriophyllum sp.	Parties aériennes	frais	10,56	18/09/2019	≤ 0,74	1,06±0,53	≤ 0,84	≤ 0,84	≤ 0,95	≤ 0,74	≤ 0,84	≤ 1,9	3,06±0,95	Bq.kg ^{⋅1} sec
Rhône en aval de Creys	Porcieu- Amblagnieu	10/09/2019	Phanérogames aquatiques	Myriophylle non identifié Myriophyllum sp.	Parties aériennes	cendre	12,53	10/12/2019	≤ 0,100	0,350±0,070	≤ 0,23	≤ 0,14	≤ 0,14	≤ 0,14	≤ 0,22	≤ 0,24	n.a.	Bq.kg ^{⋅1} sec
Rhône en aval de Creys	Porcieu- Amblagnieu	06/05/2019	Poissons	Hotu Chondrostoma nasus	Muscle	cendre	4,12	05/08/2019	≤ 0,0085	0,0536±0,0075	≤ 0,022	≤ 0,015	≤ 0,012	≤ 0,011	≤ 0,019	≤ 0,022	n.a.	Bq.kg ⁻¹ frais
Rhône en aval du Bugey	Saint- Maurice-de- Gourdans	07/05/2019	Poissons	Chevesne Leuciscus cephalus	Muscle	cendre	4,95	07/08/2019	≤ 0,010	0,0418±0,0073	≤ 0,026	≤ 0,016	≤ 0,016	≤ 0,012	≤ 0,024	≤ 0,024	n.a.	Bq.kg ⁻¹ frais

^{*} Du fait de sa courte période radioactive, l'131 a été analysé sur des échantillons frais.

Tableau 52 - Activités en tritium libre mesurées dans des échantillons collectés dans l'environnement aquatique du CNPE du Bugey lors du suivi radioécologique 2019.

Chronique	Station	Date de prélèvement	Nature	Espèce	Fraction	Frais/Sec	Date de mesure	³ H libre (Bq.L ⁻¹ d'eau de dessiccation)	³H libre (Bq.kg·¹ frais ou Bq.L·¹)	Unité
Rhône en aval du Bugey	Balan	10/09/2019	Phanérogames aquatiques	Myriophylle non identifié Myriophyllum sp.	entier/eaulyo	10,54	27/11/2019	6,30±0,90	5,70±0,81	Bq.kg ⁻¹ frais
Rhône en aval de Creys	Porcieu-Amblagnieu	10/09/2019	Phanérogames aquatiques	Myriophylle non identifié Myriophyllum sp.	entier/eaulyo	9,91	04/12/2019	0,90±0,70	0,81±0,63	Bq.kg ⁻¹ frais
Rhône en aval du Bugey	Saint-Maurice-de-Gourdans	07/05/2019	Poissons	Chevesne Leuciscus cephalus	entier/eaulyo	4,91	18/07/2019	1,80±0,60	1,43±0,48	Bq.kg ⁻¹ frais
Rhône en aval de Creys	Porcieu-Amblagnieu	06/05/2019	Poissons	Hotu Chondrostoma nasus	entier/eaulyo	4,51	18/07/2019	≤ 0,59	≤ 0,46	Bq.kg ⁻¹ frais
	Loyettes	03/07/2019	Eaux douces	Eau de cours d'eau	entier/pdtfiltr	-	18/07/2019	1,80±0,60	1,80±0,60	Bq.L ⁻¹ d'ECH.
	Chavanoz	03/07/2019	Eaux de boisson	Eau d'adduction publique	entier/pdtfiltr	-	18/07/2019	3,90±0,70	3,90±0,70	Bq.L ⁻¹ d'ECH.

Tableau 53 - Activités en tritium organiquement lié (TOL) mesurées dans des échantillons collectés dans l'environnement aquatique du CNPE du Bugey lors du suivi radioécologique 2019.

Chronique	Station	Date de prélèvement	Nature	Espèce	Fraction	Frais/Sec	Date de mesure	TOL (Bq.L ⁻¹ d'eau de combustion)	TOL (Bq.kg ⁻¹ frais)
Rhône en aval du Bugey	Balan	10/09/2019	Phanérogames aquatiques	Myriophylle non identifié Myriophyllum sp.	entier/reslyo	10,54	15/01/2020	6,00±0,90	n.a.
Rhône en aval de Creys	Porcieu-Amblagnieu	10/09/2019	Phanérogames aquatiques	Myriophylle non identifié Myriophyllum sp.	entier/reslyo	9,91	24/12/2019	5,00±0,70	n.a.
Rhône en aval du Bugey	Saint-Maurice-de-Gourdans	07/05/2019	Poissons	Chevesne Leuciscus cephalus	entier/reslyo	4,91	18/09/2019	2,60±0,70	0,332±0,090
Rhône en aval de Creys	Porcieu-Amblagnieu	06/05/2019	Poissons	Hotu Chondrostoma nasus	entier/reslyo	4,51	18/09/2019	1,80±0,60	0,252±0,085

Tableau 54 - Activités en ¹⁴C mesurées dans des échantillons collectés dans l'environnement aquatique du CNPE du Bugey lors du suivi radioécologique 2019.

Chronique	Station	Date de prélèvement	Nature	Espèce	Fraction	Frais/Sec	Date de mesure ¹⁴ C	¹⁴ C (Bq.kg ⁻¹ de C)	δ ^{12/13} C (‰)	pMC (%)	¹⁴C (Bq.kg·¹ frais)	C TOT. (g.kg ⁻¹ frais)
Rhône en aval du Bugey	Balan	10/09/2019	Phanérogames aquatiques	Myriophylle non identifié Myriophyllum sp.	entier/reslyo	10,54	24/02/2020	226,1±1,6	-20,81	99,21±0,70	6,796±0,048	30
Rhône en aval de Creys	Porcieu- Amblagnieu	10/09/2019	Phanérogames aquatiques	Myriophylle non identifié Myriophyllum sp.	entier/reslyo	9,91	24/02/2020	189,9±1,5	-14,83	82,32±0,65	6,540±0,052	34
Rhône en aval du Bugey	Saint- Maurice-de- Gourdans	07/05/2019	Poissons	Chevesne Leuciscus cephalus	entier/reslyo	4,91	26/09/2019	230±11	n.a.	n.a.	22,7±1,1	99
Rhône en amont du Bugey	Porcieu- Amblagnieu	06/05/2019	Poissons	Hotu Chondrostoma nasus	entier/reslyo	4,51	26/09/2019	207±10	-25,77	91,7±4,4	23,1±1,1	110

Tableau 55 - Activités en ⁶³Ni mesurées dans des échantillons collectés dans l'environnement aquatique du CNPE du Bugey lors du suivi radioécologique 2019.

Chronique	Station	Date de prélèvement	Nature	Espèce	Fraction	Frais/Sec	Qualité	Date de mesure ⁶³ Ni	⁶³ Ni (Bq.kg ⁻¹ sec ¹)
Rhône en amont de Bugey	Sault-Brénaz	10/09/2019	Mousses aquatiques	Cinclidotus fontinale Cinclidotus fontinaloides	Parties aériennes	4,24	cendre	28/01/2020	≤ 0,059
Rhône en aval de Bugey	Saint-Romain-de-Jalionas	10/09/2019	Mousses aquatiques	Fontinale Fontinalis sp.	Parties aériennes	6,43	cendre	21/01/2020	≤ 0,051

Tableau 56 - Activités en ⁵⁵Fe mesurées dans des échantillons collectés dans l'environnement aquatique du CNPE du Bugey lors du suivi radioécologique 2019.

Chronique	Station	Date de prélèvement	Nature	Espèce	Fraction	Qualité	Frais/Sec	Date de mesure	⁵⁵ Fe (Bq.kg ⁻¹ sec)
Rhône en amont de Bugey	Sault-Brénaz	10/09/2019	Mousses aquatiques	Cinclidotus fontinale Cinclidotus fontinaloides	Parties aériennes	cendre	4,24	14/02/2020	≤ 11
Rhône en aval de Bugey	Saint-Romain- de-Jalionas	10/09/2019	Mousses aquatiques	Fontinale Fontinalis sp.	Parties aériennes	cendre	6,43	13/02/2020	≤ 11

N'imprimez ce document que si vous en avez l'utilité.

EDF SA 22-30, avenue de Wagram 75382 Paris cedex 08 Capital de 1 525 484 813 euros 552 081 317 R.C.S. Paris www.edf.fr

CNPE du Bugey Route départementale 20 01150 St Vulbas 04 74 34 33 33