Green Bond investors and stakeholders site visit

“Chantier Romanche Gavet”

A new hydroelectric scheme on the Romanche River
Agenda

09:45 – 11:15 Transfer to Gavet site
 Introduction by EIB IR team and EDF Corporate teams

11:15 – 12:30 Presentation of the project by EDF local project managers
 & discussion

12:30 – 15:30 Site visit (possibly in 2 separate groups)
 • Safety briefing and equipment *(over a quick lunch)*
 • Visit of the water intake site upstream
 • Visit of the underground power station site downstream

15:30 – 17:00 Transfer to Lyon airport
 Discussion on project benefits and reporting with EIB IR team,
 EDF Corporate teams and Natixis
EDF Green Bonds: equivalent of €4.5bn issued, in 5 tranches and 3 currencies

<table>
<thead>
<tr>
<th>Issue date<sup>(1)</sup></th>
<th>Maturity (in years)</th>
<th>Nominal amount (millions of currency units)</th>
<th>Currency</th>
<th>Eligible investments in the use of funds</th>
<th>Allocated funds as of 31/12/16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LN1400</td>
<td>EUR</td>
<td>Construction of new renewable capacity by EDF EN</td>
<td>100%</td>
</tr>
<tr>
<td>11/2013</td>
<td>7.5</td>
<td>1,400</td>
<td>EUR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/2015</td>
<td>10</td>
<td>1,250</td>
<td>USD</td>
<td></td>
<td>97.6%</td>
</tr>
<tr>
<td>10/2016</td>
<td>10</td>
<td>1,750</td>
<td>EUR</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>01/2017</td>
<td>12</td>
<td>19,600</td>
<td>JPY</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>01/2017</td>
<td>15</td>
<td>6,400</td>
<td>JPY</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

⁽¹⁾ Date of funds reception

(1)
EDF’s hydropower fleet in mainland France

- EDF’s hydropower fleet in mainland France comprised of **433 power plants** with an average age of **72 years**

- **Around 21GW of installed capacity**
 - Of which close to **14GW** can be dispatched instantly

- **Total output in 2016 = 42.4TWh**(1)

- **Benefits of hydropower**
 - Dispatchable renewable generation
 - Speed, availability and flexibility
 - Contribution to management of supply and demand balance in a context of growing share of intermittent generation
 - Ability to provide ancillary services to the network (frequency and voltage adjustments)
 - Water storage capacity (peak energy, cold source for thermal and nuclear generation)

(1) Total net output adjusted for the electricity consumption for the running of the energy transfer pumping stations (« STEP ») is of 35,8TWh in 2016

(2) The tidal power plant of the Rance generates electricity by using the up and down movement of the tides
In September 2016, EDF extended its Green Bond Framework to investments in hydropower assets modernisation and upgrade

- Green Bond funding became available to investment activities that will enable hydropower generation facilities in mainland France to:
 - sustain a high level of generation efficiency and operational safety,
 - adapt to future changes in climate patterns, to increase their renewable electricity output, and
 - respond to enhanced flexibility needs to balance the growing share of intermittent renewable generation

- This addition further expands an already strong pipeline of Green Bond eligible investments
 - ~€1bn per year: eligible investments in new wind and solar projects by EDF EN
 - ~€300m per year: eligible investments in hydropower assets managed by EDF’s Hydro Division

This Framework builds on the structure developed for EDF’s past Green Bond issuances under which EDF committed to, and delivered, high levels of transparency and external scrutiny on all four components of the ICMA Green Bond Principles.
EDF mainland France Hydro Projects eligible to Green Bond financing

Investments in existing hydropower facilities in mainland France (excluding subsidiaries)

<table>
<thead>
<tr>
<th>Renovation and upgrade of hydropower generation facilities</th>
<th>Modernisation and automation of existing hydropower facilities’ maintenance and operation</th>
<th>Hydropower development projects</th>
</tr>
</thead>
</table>

- Improve hydropower generation efficiency and safety
- Improve resilience to climate change
- Increase generation flexibility and ability to manage growth in intermittent renewables
- Net increase of hydropower output and/or storage capacity (for pumped storage)

Fulfilling E&S criteria

- **French Hydro Project E&S criteria cover five E&S aspects**
 - Development of sustainable human resources practices and processes
 - Management of environmental impacts
 - Protection of employees and contractors workers’ health and safety
 - Promotion of responsible contractors relationship
 - Dialogue with local players

Inspired by the IHA Protocol’s philosophy
ROMANCHE GAVET PROJECT ➔ BUILDING OF A NEW SCHEME ESSENTIALLY UNDERGROUND INSTEAD OF THE 6 EXISTING UNITS

A MORE EFFICIENT SCHEME: + 40% outputs
- 2 Francis Units 2 x 46MW (270m gross head)
- Generation ≈560GWh, the average consumption of 230,000 residents

A SAFER SCHEME

A BETTER INTEGRATION IN THE ENVIRONMENT
- Balance between reinforced uses in this narrow valley

A SCHEME CONSISTING OF:
- a dam / inlet structure in Livet
- a headrace gallery 10 km long in the massif of Belledonne
- an underground power station in Gavet
A MORE EFFICIENT SCHEME

Existing schemes

- Gross head: 267m
- Installed capacity: 82MW
- Generation output: ≈400GWh

Matching equipment
- 5 water intakes
- 3 galleries / total length: 3,727m
- 3 headrace channels / total length: 1,225m
- 12 penstocks / total length: 7,467m
- 9 buildings
- 26 units

New scheme

- Gross head: 270m
- Installed capacity: 92MW
- Generation output: 560GWh

Matching equipment
- 1 water intake
- 1 headrace gallery 9.4 km (dia: 4.7m)
- 1 underground surge shaft: 180m high
- 1 pressure shaft: 163m high
- 1 underground power plant with 2 x 47MW Francis units 47MW
Vertical structures
Surge shaft: H180m x D4.8m
Steel-lined pressure shaft: H163m x D3.3m
Raised with a raise drill

Headrace Tunnel
L 9.3 km x D 4.7 m
Muck = 250,000m³
Dug by two tunnelling boring machines

Underground Powerstation
Unit Cavern: 74m x 16m x [25 to 35m]
Transformers Cavern: 64m x 11m x 15m
Muck = 60,000m³
Dug with explosives

Intel structures
- A gate-structure dam
- A water intake structure
- 3 gates, each 10m wide

Outlet structures
100m long
Energy Dissipators
EDF Green Bond mainland France hydro projects
Project selection, reporting and verification

Project selection
Based on project assessment by **EDF’s Hydro Division teams** in charge of project development, procurement and sustainable development.

~Quarterly
- Total amount of proceeds allocated to selected Eligible Projects (+ share vs. total raised and unallocated balance)
- Distribution of the total allocated amount by Eligible Projects categories and geographies
- Number of projects having received Green Bond funding

Annual
- Description of most representative projects that received Green Bond funding
 - For each Green Bond issue, aggregated impacts:
 - For development projects: additional generation capacity; expected output, and expected avoided CO₂ emissions
 - For all other EDF Hydro Division Eligible Projects: generation capacity impacted by investments, expected output, and qualitative description of associated environmental benefits

Annual attestation report from Deloitte
- Alignment with Green Bond Principles
- Compliance with EDF Green Bond Framework on the following aspects:
 - Project selection process and eligibility of Green Bond-funded projects
 - Tracking of the funds raised and reconciliation of amounts of funds allocated
 - Compliance of avoided CO₂ emissions reported with calculation methodology
EDF contemplated reporting data on Romanche-Gavet project

<table>
<thead>
<tr>
<th>Total capacity</th>
<th>Additional capacity</th>
<th>Total output</th>
<th>Additional output</th>
</tr>
</thead>
<tbody>
<tr>
<td>92MW</td>
<td>10MW</td>
<td>560GWh/yr</td>
<td>155GWh/yr</td>
</tr>
</tbody>
</table>

- Avoided CO₂ emissions from additional output will be provided, based on:
 - Average emission factor per kWh of the electric system based on the energy mix and life cycle analysis emission factors of each generation technology
 - Emission factor of the project based on LCA emissions of hydropower plant upgrades (work in progress on this factor)

- Under consideration
 - Should EDF report on avoided CO₂ emissions from the renovation of the existing capacity?
 - SNCF Réseaux has developed an approach to calculate avoided emissions from the maintenance and upgrade of existing rail lines
 - How to report on other environmental benefits such as restoration of ecological continuity and biodiversity conservation?